М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Эрайз
Эрайз
08.09.2021 03:10 •  Алгебра

Найти tgx, если sin(x+30°)+sin(x-30°)=2√(3cosx)

👇
Ответ:
Используем формулу суммы синусов 
 sinα + sinβ = 2 * sin \frac{ \alpha + \beta }{2} * cos\frac{ \alpha - \beta }{2} 
α = x + 30 
β = x - 30 
sin (x + 30) + sin (x - 30) = 2 * sin \frac{x + 30 + x - 30}{2} * cos \frac{x + 30 - x + 30}{2} = 2 √ (3cosx)  
2 * sin\frac{2x}{2} * cos \frac{60}{2} = 2 √(3cosx)  
2 * sin x * cos 30 = 2 √(3cosx) 
2 * √3/2 * cosx = 2 √(3cosx)
√3 * sinx = 2 √(3cosx)
(√3 * sinx)² = (2 √(3cosx))²    
3 * sin ² x = 4 * 3 * cosx 
sin²x = 1 - cos²x
3 * (1 - cos²x) = 4 * 3 * cosx
1 - cos²x = 4 *cosx
cos²x + 4cosx - 1 = 0 
cosx = t 
t² + 4 t - 1 = 0 
D = 16 - 4 * 1 * (- 1) = 16 + 4 = 20 
t ₁ = (- 4 - √20)/2 = (- 4 - 2√5)/2 = - 2 - √5  
t₂ = (- 4 + √20)/2 = (- 4 + 2√5)/2 = - 2 + √5 
cosx = - 2 - √5 < - 1 не удовлетворяет, т.к. значения  -1 ≤ cosх ≤ 1 
cos x = - 2 + √5  <  1 удовлетворяет
Используем формулу
1 + tg²x = \frac{1}{cos ^{2}x } 
tg²x =  \frac{1}{cos ^{2}x }  - 1 
tg²x = \frac{1}{ (- 2 + \sqrt{5} )^{2} } - 1 = \frac{1}{9 - 4 \sqrt{5} }-1 = \frac{1 - 9 + 4 \sqrt{5} }{9 - 4 \sqrt{5} }  = \frac{- 8 + 4 \sqrt{5} }{9 - 4 \sqrt{5} }\frac{(-8 + 4 \sqrt{5} ) * (9 + 4 \sqrt{5} )}{(9 - 4 \sqrt{5} ) * (9 + 4 \sqrt{5} )}\frac{-72 + 36 \sqrt{5} - 32 \sqrt{5} + 80 }{81 - 80}  = 8 + 4√5 
tg²x = 8 + 4√5 = 4 (2 + √5)
tgx = 2√(2 + √5) 
tgx = - 2√(2 + √5) 
4,8(63 оценок)
Открыть все ответы
Ответ:
Alfa1sames
Alfa1sames
08.09.2021

ответ: x∈(-1;1)∪(3;5).

Объяснение:

Прежде всего, так как выражение x²-4*x+3 находится под знаком логарифма, то оно должно быть положительно, т.е. должно выполняться неравенство x²-4*x+3>0. Далее, так как функция y=log8(x) - возрастающая, то из заданного неравенства следует неравенство x²-4*x+3<8¹=8, или x²-4*x-5<0. Решая квадратное уравнение x²-4*x-5=0 и находим его корни x1=-1 и переписываем данное неравенство в виде (x+1)*(x-5)-<0. Решая его методом интервалов, находим x∈(-1;5). Решая теперь неравенство x²-4*x+3>0, находим x∈(-∞;1)∪(3;∞). Объединяя решения этих неравенств, находим x∈(-1;1)∪(3;5).

4,5(65 оценок)
Ответ:
anyalogunova1
anyalogunova1
08.09.2021

В решении.

Объяснение:

График функции, заданной уравнением у = (а + 1)х + а - 1 пересекает ось абсцисс в точке с координатами (-6; 0).  

а) Найди значение а:

Подставить известные значения х и у (координаты точки) в уравнение, вычислить а:

у = (а + 1)х + а - 1

0 = (а + 1)*(-6) + а - 1

0 = -6а - 6 + а - 1

0 = -5а - 7

5а = -7

а = -7/5 (деление)

а = -1,4;

б) запишите функцию в виде у=kx+b;

Коэффициент k = (а + 1) = -1,4 + 1 = -0,4;

k = -0,4;

b = (а - 1) = -1,4 - 1

b = -2,4;

Уравнение функции:

у = -0,4х - 2,4.

4,6(74 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ