5.
y=-x^2-2x+3,
a=-1<0 - ветви параболы вниз;
x_0=-b/(2a)=-(-2)/(2*(-1))=-1,
y_0=-(-1)^2-2*(-1)+3=4,
(-1;4) - вершина параболы;
x=0, y=3,
(0;3) - пересечение с Оу,
y=0, -x^2-2x+3=0,
x^2+2x-3=0,
по теореме Виета x_1=-3, x_2=1,
(-3;0), (1;0) - пересечения с Оx;
1) E_y=(-∞;4);
2) x∈(-1;+∞);
6.
(х^2+2х+1)(х^2-6х-16)<0,
(х^2+2х+1)(х^2-6х-16)=0,
х^2+2х+1=0, (x+1)^2=0, x+1=0, x=-1;
х^2-6х-16=0, по теореме Виета x_1=-2, x_2=8; х^2-6х-16=(x+2)(x-8);
(x+1)^2(x+2)(x-8)<0,
(x+1)^2≥0, x∈R,
(x+2)(x-8)<0,
-2<x<8,
x∈(-2;8);
7.
x^2-6bx+3b=0,
D<0,
D/4=k^2-ac=(-3b)^2-3b=3b^2-3b=3b(b-1),
3b(b-1)<0,
3b(b-1)=0,
b_1=0, b_2=1,
0<b<1,
b∈(0;1);
8.
ΔABC, уг.C=90°, CE - высота, AE=16см, BE=9см;
AB=AE+BE (по свойству сложения отрезков),
AB=16+9=25см;
AC^2=AB*AE (катет есть среднее геометрическое гипотенузы и смежного сегмента),
AC^2=25*16=400, AC=20см,
BC^2=AB*BE=25*9=225, BC=15см,
P=AB+AC+BC=25+20+15=60см.
В решении.
Объяснение:
Решить неравенство:
1) х² - 7х - 30 > 0;
Приравнять к нулю и решить квадратное уравнение:
х² - 7х - 30 = 0
D=b²-4ac = 49 + 120 = 169 √D=13
х₁=(-b-√D)/2a
х₁=(7-13)/2
х₁= -6/2
х₁= -3;
х₂=(-b+√D)/2a
х₂=(7+13)/2
х₂=20/2
х₂= 10;
Уравнение квадратичной функции, график - парабола, ветви направлены вверх, пересекают ось Ох в точках х= -3 и х=10.
Функция > 0, как в неравенстве, при х от -∞ до х= -3 и от х=10 до +∞ (график выше оси Ох).
Решения неравенства: х∈(-∞; -3)∪(10; +∞).
Неравенство строгое, скобки круглые.
2) (2х + 1)(х - 4) <= 0
2х² - 8х + х - 4 <= 0
2х² - 7х - 4 <= 0
Приравнять к нулю и решить квадратное уравнение:
2х² - 7х - 4 = 0
D=b²-4ac = 49 + 32 = 81 √D=9
х₁=(-b-√D)/2a
х₁=(7-9)/4
х₁= -2/4
х₁= -0,5;
х₂=(-b+√D)/2a
х₂=(7+9)/4
х₂=16/4
х₂=4;
Уравнение квадратичной функции, график - парабола, ветви направлены вверх, пересекают ось Ох в точках х= -0,5 и х=4.
Функция <= 0, как в неравенстве, при х от х = -0,5 до х= 4 (график ниже оси Ох).
Решения неравенства: х∈[-0,5; 4].
Неравенство нестрогое, скобки квадратные.
7x+2y=86
7x+2*(-2,5x)=86
7x-5x=86
2x=86
x=86/2=43
y=-2,5*43=-107,5
(43;-107,5)