А) хотя бы в одном справочнике: исключаем вероятность одновременного отсутствия формул в обоих справочниках: 1-0,8=0,2 - вероятность отсутствия формулы в первом справочнике 1-0,7=0,3 - вероятность отсутствия формулы во втором справочнике 0,2*0,3=0,06 - вероятность отсутствия формулы в обоих справочниках одновременно 1-0,06 = 0,94 - вероятность нахождения формулы хотя бы в одном справочнике Б) только в одном справочнике. Исключим одновременное нахождение и одновременное отсутствие формул в двух справочниках: 0,8*0,7=0,56 - вероятность нахождения формулы в обоих справочниках 0,2*0,3=0,06 - вероятность отсутствия формулы в обоих справочниках одновременно 1-0,56-0,06=1-0,62=0,38 - вероятность нахождения формулы только в одном справочнике.
Сможет, так как если две последние цифры в Петином числе имеют разную четность, то мама называет число 20. Прибавление 20 сохраняет четность цифр, и если они все время остаются разной четности, то не могут быть равными. Если цифры числа Пети имеют одинаковую четность - то мама задумывает число 50. После нечетного количества прибавлений 50 последние две цифры будут иметь разную четность, т.е. не равны. А после четного количества прибавлений 50 последние две цифры не меняются, т.к. прибавляем число кратное 100.
√(3х+1)*(х-6)=3х+1 Сокращаем на √(3х+1)
х-6=√(3х+1) Возводим в квадрат при условии, что 3х+1≥0; x≥-1/3; x-6≥0; x≥6
х²-12х+36=3х+1
х²-15х+35=0
Только один корень подходит в промежуток: (15+√85)/2
ответ: корень находится в промежутке [6;+∞), сам корень равен (15+√85)/2