ответ:
Парабола: определение, свойства, построение
Параболой называется линия, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
y2=2px
при условии p>0.
Из уравнения (1) вытекает, что для всех точек параболы x≥0. Парабола проходит через начало канонической системы координат. Эта точка называется вершиной параболы.
Форма параболы известна из курса средней школы, где она встречается в качестве графика функции y=ax2. Отличие уравнений объясняется тем, что в канонической системе координат по сравнению с прежней оси координат поменялись местами, а коэффициенты связаны равенством 2p=a−1.
Фокусом параболы называется точка F с координатами (p/2,0) в канонической системе координат.
Директрисой параболы называется прямая с уравнением x=−p/2 в канонической системе координат
Утверждение.
Расстояние от точки M(x,y), лежащей на параболе, до фокуса равно
r=x+p2
Доказательство.
Вычислим квадрат расстояния от точки M(x,y) до фокуса по координатам этих точек: r2=(x−p/2)2+y2 и подставим сюда y2 из канонического уравнения параболы. Мы получаем
r2=(x−p2)2+2px=(x+p2)2.
Отсюда в силу x≥0 следует равенство
1,2х - 0,5х в квадрате = 4х в квадрате - 0,8х
1,2х - 0,5х в квадрате - 4х в квадрате + 0,8х =0
-4,5х в квадрате + 2х=0 | *(-1)
4,5х в квадрате - 2х=0
х(4,5х - 2)=0
х=0 или 4,5х-2=0
4,5х=2
х=0,(4)