Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов →a и →b. То есть для векторов →a = (ax, ay), →b = (bx, by) на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет вид: (→a, →b) = ax*bx + ay*by.
Объяснение:
Многие физические величины, например сила, перемещение материальной точки, скорость, характеризуется не только своими числовыми значениями, но и направлением в пространстве. Такие физические величины называются векторными величина и (или коротко вектороми)
Если поставь как лучший !
1) (х-1)(х+7)
1) (х-1)(х+7)х*х+7х-х-7
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-7
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+8
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+83) (х²-2х)(2х+4+х²)
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+83) (х²-2х)(2х+4+х²)х²(2х+4+х²)-2х(2х+4+х²)
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+83) (х²-2х)(2х+4+х²)х²(2х+4+х²)-2х(2х+4+х²)2х³+4х²+х⁴-4х²-8х-2х³
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+83) (х²-2х)(2х+4+х²)х²(2х+4+х²)-2х(2х+4+х²)2х³+4х²+х⁴-4х²-8х-2х³х⁴-8х
б) 2 5/8