1. -2;
2. 3.
Объяснение:
1.Sn=6n-n^2
a1 = S1 = 6•1 - 1^2 = 5;
a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;
a2 = S2 - S1 = 8 - 5 = 3.
Найдём d:
d = a2 - a3 = 3 - 5 = -2.
2. Sn=6n-n^2
Рассмотрим квадратичную функцию
у = 6х - х^2.
Графиком функции является парабола
у = - х^2 + 6х
Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:
х вершины = -b/(2a) = -6/(-2) = 3.
y вершины = - 3^2 +6•3 = -9+18 = 9.
Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.
Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.
Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.
ответить на второй вопрос можно и по-прежнему другому:
Sn=6n-n^2
- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.
Объяснение:
На промежутке (-6; -2) функция f(x) возрастает, значит на этом промежутке f'(x)>0, а это и есть тангенс угла наклона касательной к графику (tga = f'(x)). Следовательно в точках x=-4; -3 ∈ (-6;-2) tga>0.
На промежутке (-2; 4) функция f(x) убывает, значит на этом промежутке f'(x)<0, а это и есть тангенс угла наклона касательной к графику (tga = f'(x)). Следовательно в точках x=0; 1 ∈ (-2;4) tga<0.
На промежутке (4; 7) функция f(x) возрастает, значит на этом промежутке f'(x)>0, а это и есть тангенс угла наклона касательной к графику (tga = f'(x)). Следовательно в точке x=6 ∈ (4;7) tga>0.
x²=t, t>0
t²-5t+4=0
D=9
t₁=4, t₂=1
t=4, x²=4, x₁=-2, x₂=2
t=1, x²=1, x₁=-1, x₂=1
ответ: -2; -1; 1;2