Свойства функции y=sinx
1. Область определения — множество R всех действительных чисел.
2. Множество значений — отрезок [−1;1].
3. Функция y=sinx периодическая с периодом T= 2π.
4. Функция y=sinx — нечётная.
5. Функция y=sinx принимает:
- значение, равное 0, при x=πn,n∈Z;
- наибольшее значение, равное 1, при x=π2+2πn,n∈Z;
- наименьшее значение, равное −1, при x=−π2+2πn,n∈Z;
- положительные значения на интервале (0;π) и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈Z;
- отрицательные значения на интервале (π;2π) и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈Z.
6. Функция y=sinx:
- возрастает на отрезке
[−π2;π2] и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈Z;
- убывает на отрезке
[π2;3π2] и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈Z.
Объяснение:
походу) если неправильно сори)
Объяснение:
Эта задача имеет два принципиально разных решения.
А) считаем, что все голубые шары одинаковы между собой, и все розовые тоже одинаковы.
Тогда:
1) двумя : вынуть розовый шар или вынуть голубой шар.
2) тоже двумя : сначала вынуть розовый шар, потом голубой, или наоборот, сначала голубой шар, а потом розовый.
Б) считаем, что все шары разные, например, имеют номера, как в бильярде.
Тогда:
.
Допустим, мы первым вынимаем голубой шар. Это 6 разных .
За ним вынимаем розовый, это 8 разных .
Всего вынуть сначала голубой шар, потом розовый.
И ещё вынуть, наоборот, сначала розовый шар, потом голубой.