В решении.
Объяснение:
Дана функция y=x²-9. Построй график функции y=x²-9 .
График - парабола, ветви направлены вверх.
Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -4 -3 -2 -1 0 1 2 3 4
у 7 0 -5 -8 -9 -8 -5 0 7
a) координаты вершины параболы: (0; -9)
х₀= -b/2а= 0/2= 0;
у₀= 0²-9= -9.
б) при каких значениях аргумента значения функции отрицательны?
Смотрим на график, у<0 при х от -3 до 3, то есть, х∈(-3, 3).
в) при каких значениях аргумента функция возрастает?
Согласно графика [0; +∞ ) .
г) при каких значениях аргумента Функция убывает?
Согласно графика (-∞, 0].
Арифметическая прогрессия простыми словами: последовательность чисел, методом прибавления одного и того же числа, например, 2;7;12;17 (всегда прибавляется 5)
под цифрой 1 тебе дана вся арифметическая прогрессия
под цифрой 2 та же прогрессия, только из неё убрали каждый третий член (то есть убрали цифры 5 и 11)
в третьем действие предоставлена формула одного из свойств арифметической прогрессии, по этой формуле тебе и надо проверить утверждение, которое выделено наверху синим цветом.
Вот что надо сделать:
Там где написано "2а2 =", нужно посчитать и написать ответ. а2 - это второй член прогрессии, он равен 3. То есть, 2а2 = 2 × 3 = 6. 6 и надо записать в первую ячейку ответа. Все данные брали из второй строки задания, потому что по ней и надо проверять верность высказывания
Также считаем и вторую ячейку, только там такая формула: "а1 + а3 = " 1 + 7 = 8 (мы взяли первый и третий член прогрессии)
Две эти ячейки взяты из формулы свойства, их просто сократили. Они должны быть равны, иначе это не арифметическая прогрессия.
В первой ячейки напиши 6, во второй 8. Они не равны, значит, утверждение, которое наверху задания - неверное. Из прогрессии нельзя вычеркнуть какие-либо члены, иначе последовательность пропадёт
Сначала мы умножили то что в скобках на 2.
Затем мы взаимно уничтожили 2а и -2а.