М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
1244ррровг
1244ррровг
01.05.2023 22:20 •  Алгебра

Дана функция f(x) = (x^2 - k)/(x^2 - 9). касательная в точке у=2 параллельна оси ох. 1. найти крайние точки 2. найти k 3. доказать, что данная функция - квадратичная.

👇
Ответ:
аня2942
аня2942
01.05.2023
Область определения функции

 (-∞;-3)U(-3;3)U(3;+∞)
1) ? не поняла какие крайние? может область определения, тогда см. выше
2)
Находим производную
f`(x)=( \frac{ x^{2} -k}{ x^{2} -9})`= \frac{( x^{2} -k)`( x^{2} -9)-( x^{2} -k)( x^{2} -9)`}{( x^{2} -9) ^{2} }= \\ \\ = \frac{2x\cdot( x^{2} -9)-( x^{2} -k)\cdot 2x}{( x^{2} -9) ^{2} }= \frac{2x( x^{2} -9- x^{2} +k)}{(x-3) ^{2} } = \frac{2x\cdot(k-9)}{( x^{2} -9) ^{2} }

Если у=2, то
2=\frac{ x^{2} -k}{ x^{2} -9} \\ \\ 2 x^{2} -18= x^{2} -k \\ \\ x^{2} =18-k \\ \\ x_1= \sqrt{18-k} \\ \\ x_2=- \sqrt{18-k}

По условию, касательная в точке  у=2     ( х₁=√(18-k)  или х₂=-√(18-k) )  параллельна оси х, т.е угловой коэффициент такой прямой равен 0.

Угловой коэффициент касательной в точке равен значению производной функции в этой точке.

Значит
f`( \sqrt{18-k} )= \frac{2\cdot \sqrt{18-k} \cdot(k-9)}{( ( \sqrt{(18-k)} ^{2} -9) ^{2} }=\frac{2\cdot \sqrt{18-k} \cdot(k-9)}{( 9-k) ^{2} } \\ \\ f`( -\sqrt{18-k} )= \frac{2\cdot (- \sqrt{18-k}) \cdot(k-9)}{( (- \sqrt{(18-k)} ^{2} -9) ^{2} }=-\frac{2\cdot \sqrt{18-k} \cdot(k-9)}{( 9-k) ^{2} }

Приравниваем найденные в точках производные к нулю, находим k
\frac{2\cdot \sqrt{18-k} \cdot(k-9)}{( 9-k) ^{2} }=0
или
-\frac{2\cdot \sqrt{18-k} \cdot(k-9)}{( 9-k) ^{2} }=0
k≠9
получаем
k=18
3)
Докажем четность
По определению функция является четной, если
1) область определения симметрична относительно 0
2) f(-x)=f(x)

У данной функции область определения
(-∞;-3)U(-3;3)U(3;+∞) -  симметрична относительно 0

f(- x)=\frac{ (-x)^{2} -k}{(-x)^{2} -9}= \frac{ x^{2} -k}{ x^{2} -9}=f(x)

Функция четна.
4,7(57 оценок)
Открыть все ответы
Ответ:
юля2716
юля2716
01.05.2023
1.
1)  х-8  <0
   11+х
Используем метод интервалов:
(х-8)(11+х)<0

{(x-8)(x+11)<0      {(x-8)(x+11)<0
{11+x≠0               {x≠-11

Отметим нули функции f(x)=(x-8)(x+11):
х=8      х=-11
    +           -             +
-11 8
           
x∈(-11; 8)

2)   13+х   >0
      2,5х
{2.5x(13+x)>0     {x(x+13)>0
{2.5x≠0              {x≠0

x(x+13)>0
x=0     x=-13
    +            -           +
-13 0
                 
x∈(-∞; -13)∨(0; ∞)

3) х+7 <0
   3-х
{(x+7)(3-x)<0   {-(x-3)(x+7)<0       {(x-3)(x+7)>0
{3-x≠0             {x≠3                    {x≠3

(x-3)(x+7)>0
x=3     x=-7
    +           -          +
-7 3
             
x∈(-∞; -7)∨(3; ∞)
 
4) 2х-4 >0
    x+2
{(2x-4)(x+2)>0     {2(x-2)(x+2)>0     {(x-2)(x+2)>0
{x+2≠0               {x≠-2                   {x≠-2

(x-2)(x+2)>0
x=2    x=-2
     +          -         +
-2 2
             
x∈(-∞; -2)∨(2; ∞)

2.
1) (х-1)(х+1)≤0
   х=1     х=-1
     +         -         +
 -1  1
           
х∈[-1; 1]
х={-1; 0; 1} - целые решения неравенства

2) -х²-5х+6>0
    x²+5x-6<0
Парабола, ветви направлены вверх.
Нули функции:
х²+5х-6=0
Д=25+24=49
х₁=-5-7=-6
       2
х₂=-5+7=1
        2
     +       -          +
-6 1
           
x∈(-6; 1)
х={-5; -4; -3; -2; -1; 0}

3) 2+x-x²≥0
   -x²+x+2≥0
    x²-x-2≤0
  x²-x-2=0
 D=1+8=9
 x₁=1-3=-1
        2
  x₂=1+3=2
          2
      +         -         +
 -1 2
             
x∈[-1; 2]
х={-1; 0; 1; 2}

4) 3х²-7х+2<0
   3x²-7x+2=0
D=49-4*3*2=49-24=25
x₁=7-5 = 1 
       6     3
x₂= 12= 2
      6    
   +          -          +
1 2
         3  
x∈(¹/₃; 2)
х={1}
4,7(1 оценок)
Ответ:
talipovskiyt
talipovskiyt
01.05.2023
Решать надо через производную:
f'' (x) = 3x^2+6x = 0
3x(x+2)=0
x=0, x= -2
Рисуешь координатную прямую, на ней отмечаешь эти две точки. Они делят прямую на 3 промежутка: на первом промежутке(-бесконечность; -2] ставь плюс на втором минус, на третьем тоже плюс. Таким образом, а) функция убывает на промежутке от (-бесконечность; -2], возрастает от [-2; +бесконечность)...б) -2 точка минимума, 0 не является точкой экстремума, т.к. там не происходит смена знака...в) чтобы найти наибольшее и наименьшее значение, ты должен подставить -4, -2, 0 и 1 в начальную функцию и посчитать.
4,5(35 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ