Пусть гвоздика стоит 10 ртогда роза стоит (180-10*2)/3=160/3=53.333(не кратно 10)Пусть гвоздика стоит 20 ртогда роза стоит (180-20*2)/3=140/3=46,667(не кратно 10)Пусть гвоздика стоит 30 ртогда роза стоит (180-30*2)/3=120/3=40(кратно 10)Пусть гвоздика стоит 40 ртогда роза стоит (180-40*2)/3=100/3=33,333(не кратно 10)Пусть гвоздика стоит 50 ртогда роза стоит (180-50*2)/3=80/3=26,667(не кратно 10)Пусть гвоздика стоит 60 ртогда роза стоит (180-60*2)/3=60/3=20(кратно 10)Пусть гвоздика стоит 70 ртогда роза стоит (180-70*2)/3=40/3=13,333(не кратно 10)Пусть гвоздика стоит 80 ртогда роза стоит (180-80*2)/3=20/3=6,667(не кратно 10) ответ: роза стоит 20 р, гвоздика 60или роза стоит 40 р, гвоздика 30.
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k = ( n 0 ) a n + ( n 1 ) a n − 1 b + ⋯ + ( n k ) a n − k b k + ⋯ + ( n n ) b n (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n где ( n k ) = n ! k ! ( n − k ) ! = C n k {n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты, n n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
1 - 100%
3/7 - х
х=100*3/7
х примерно =42,8.