Исследуем заданную функцию 1. Область определения функции: - множество всех действительных чисел. 2. Четность функции Функция называется четной, если выполняется равенство: , а нечетной - Видим, что и , значит функци ни чётная ни нечётная.
3. Точки пересечения с осью Оу и Ох 3.1. С осью Ох (f(x)=0), тоесть Добавим и вычтем одинаковые слагаемые - точки пересечения с осью Ох 3.2. С осью Оу (х=0) Если х=0, то f(x)=2 (0;2) - точки пересечения с осью Оу
4. Критические точки, возрастание и убывание функции. Локальный максимум и локальный минимум. 4.1. Найдем производную функции Приравниваем производную функции к нулю
________+_______________(0)____-________(2)____+______ Функция возрастает на промежутке и , а убывает на промежутке - . В точке функция имеет локальный максимум, а в точке - локальный минимум. - относительный максимум. - относительный минимум
5. Точка перегиба. 5.1. Вторая производная функции Приравниваем ее к нулю (1;0) - точка перегиба.
Горизонтальных, наклонных и вертикальных асимптот нет.
Заданное выражение записываем в виде функции: у = 5х + 1 - ((6х-3)/х) = 5х + 1 - 6 + (3/х) = 5х - 5 + (3/х). Так как переменная есть в знаменателе, то график такой функции - гиперболическая кривая. Найдём производную этой функции. y' = 5 - (3/x²) и приравняем её нулю. 5 - (3/x²) = 0. (5x² - 3)/x² = 0. Достаточно приравнять нулю числитель. 5x² - 3 = 0. x² = 3/5. x = +-√(3/5). Имеем 2 значения точек экстремума. Подставим их в функцию и находим 2 значения: у = -5 + 2√15 ≈ 2,7459667, у = -5 - 2√15 ≈ -12,745967. В этих точках касательная к графику параллельна оси Ох и функция достигает предельных значений. Получаем область допустимых значений функции: x ≤ -12,745967, x ≥ 2,7459667. Эти же значения можно записать так: x ≤ -5 - 2√15, x ≥ -5 + 2√15.
1. у = -2х² + 5х + 3 у=-4 -4=-2x²+5x+3 2x²-5x=7 2x²-5x-7=0 D=(-5)²-4*2*(-7)=81 √81=9 x₁=(5+9)/2*2=14/4=3.5 y=-4 при x₁=3.5; x₂=-1 x₂=(5-9)/2*2=-4/4=-1 2. f(x)= х² – 2х – 8 График во вложении а. y>0 при x∈(-∞;-2)∪(4;+∞) y<0 при x∈(-2;4) б. f возрастает (x₂>x₁ => y₂>y₁) при x∈(1;+∞) f убывает (x₂>x₁ => y₂<y₁) при x∈(-∞;1) в. y(max)=∞ y(min)=-9 3. у = -5х² + 6х Парабола y=ax²+bx, a<0, значит ветви параболы направлены вниз. y(min)=-∞ y(max) принадлежит вершине параболы: х=-b/2a => x=-6/2*-5=0.6 y=-5*0.6²+6*0.6 => y=1.8 Координаты вершины (0.6;1.8) y(max)=1.8 4. Для нахождение точек пересечения 2-х графиков, решаем систему уравнений: {у = х + 2 {у = ( х – 2)² + 2 x²-4x+4+2=x+2 x²-5x+4=0 x₁+x₂=5 x₁*x₂=4 x₁=4 x₂=1 y₁=4+2=6 y₂=1+2=3 Точки пересечения: (4;6) и (1;3) Для графического решения, чертим грапфики обеих функций в одной кооординатной плоскости. График во вложеннии
1. Область определения функции:
2. Четность функции
Функция
Видим, что
3. Точки пересечения с осью Оу и Ох
3.1. С осью Ох (f(x)=0), тоесть
Добавим и вычтем одинаковые слагаемые
3.2. С осью Оу (х=0)
Если х=0, то f(x)=2
(0;2) - точки пересечения с осью Оу
4. Критические точки, возрастание и убывание функции. Локальный максимум и локальный минимум.
4.1. Найдем производную функции
Приравниваем производную функции к нулю
________+_______________(0)____-________(2)____+______
Функция возрастает на промежутке
5. Точка перегиба.
5.1. Вторая производная функции
Приравниваем ее к нулю
(1;0) - точка перегиба.
Горизонтальных, наклонных и вертикальных асимптот нет.