38 см
Объяснение:
Пусть х см - одна из сторон прямоугольника, тогда (х + 5) см - другая сторона. Площадь прямоугольника равна 84 см².
Площадь находится по формуле S = ab, где a,b - стороны прямоугольника
х * (х + 5) = 84
х² + 5х = 84
х² + 5х - 84 = 0
D = 5² - 4 * 1 * (-84) = 25 + 336 = 361 = 19²
x₁ = (-5 - 19) / 2 = -24 / 2 = -12 ⇒ сторона не может быть отрицательна
x₂ = (-5 + 19) / 2 = 14 / 2 = 7
7 см - ширина прямоугольника
7 + 5 = 12 см - длина прямоугольника
Периметр находится по формуле P = 2 * (a + b), где a,b - стороны прямоугольника
2 * (7 + 12) = 2 * 19 = 38 см
Кубическое уравнение может иметь от 1 до 3 корней (в действительных числах). В общем случае график функции у=x^3+a*x^2+b*x+c имеет вид, похожий на знак "извилистая дорога", т.е. при увеличении х, значение функции сначала увеличивается, достигает максимума, затем уменьшается, достигает минимума, затем вновь возрастает до бесконечности. В зависимости от параметров а, b, и с график функции пересекает ось Х либо 1 раз, либо три раза, т.е. уравнение имеет либо 1 либо 3 корня. Но при некоторых значениях параметров а, b, и с график функции касается оси Х либо в точке максимума, либо в точке минимума, в этом случае два корня совпадают, и формально получается, что уравнение имеет 2 корня. Значит нужно найти эти максимум и минимум. Представим уравнение в виде функции: у=x^3-3x^2+6-а. Найдем производную и приравняем ее нулю.
y'=3*x^2-6*x. 3*x^2-6*x=0, 3*х*(х-2)=0. Получаем х(1)=0 и х(2)=2. Значит при х=0 функция имеет максимум, а при х=2 - минимум. Нам нужно найти значения "а", при которых у(макс)=0 и у(мин)=0.
у(макс)=0^3-3*0^2+6-a= 6-a, 6-a=0, a=6.
у(мин)=2^3-3*2^2+6-a=8-12+6-a=2-a, 2-а=0, а=2. Таким образом, при а=2 и а=6 уравнение x^3-3x^2+6=a имеет 2 корня. По условию, находить сами корни - не требуется. Но найти их все же можно.
При а=6 получаем: x^3-3x^2+6=6, x^3-3x^2=0, x^2*(х-3)=0, х(1)=0, х(2)=3.
При а=2 получаем: x^3-3x^2+6=2, x^3-3x^2+4=0, x^3-2*x^2-*x^2+4=0, x^2*(x-2)-(x^2-4)=0, x^2*(x-2)-(x-2)*(x+2)=0,
(x-2)*(x^2-x-2)=0, либо х-2=0, откуда х=2, либо x^2-x-2=0, откуда х=2 или х=-1, итого два корня х=2 и х=-1.
Скорость второго автомобиля - х-10.
420/(х-10)-420/х=1
420х-420х+4200=х²-10х
х²-10х-4200=0 D=16900
x₁=70 x₂=-60 x∉
ответ: скорость первого автомобиля 70 км/ч,
скорость второго автомобиля 60 км/ч..