Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.] Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см. Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.
1) путь сначала было х соли и у воды x/(x+y)=0,35 x+y -масса раствора когда добавили соль, стало (x+110)/(x+110+y)=0,6 решаем эту систему x=0,35(x+y) x+110=0,6(x+y+110)
x=0,35x+0,35y 0,65x=0,35y y=0,65x/0,35=13x/7
x+110=0,6(x+13x/7+110) x+110=0,6(20x/7+110) x+110=12x/7+66 12x/7-x=110-66 4x/7=44 x=44*7/4=77 y=77 *13/7=11*13=143 x+y=77+143=220 ответ: первоначальная масса раствора 220г в растворе первоначально было соли 77г
2) в певой бочке было х литров, а во второй у x+y=798 x-15=y-57 решаем эту систему y=798-x x=y-42 x=798-x-42 2x=756 x=378 y=798-378=420
ответ: в первой бочке было первоначально 378л бензина; во второй бочке было первоначально 420л бензина.
An = A1 + (n - 1)D;
A1 = An - (n - 1)D;
A1 = 38 - (15 - 1)*3 = 38 - 14*3 = 38 - 42 = -4;
Sn = n*(2A1 + D(n-1))/2
S10 = 10*(2*(-4) + 3(10-1))/2 = 10*(-8 + 27)/2 = 5*19 = 95;