М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
SashaKromberg
SashaKromberg
08.11.2021 19:59 •  Алгебра

Построй графики линейных функций y=3x−1 и y=4x−3 в одной координатной плоскости, и найди решение уравнения 3x−1=4x−3, используя построение.

👇
Ответ:
kcenigolovaxa
kcenigolovaxa
08.11.2021
Строим графики, находим точку пересечения( она и будет являться решением уравнения)
Построй графики линейных функций y=3x−1 и y=4x−3 в одной координатной плоскости, и найди решение ура
4,7(8 оценок)
Открыть все ответы
Ответ:
Kaisool
Kaisool
08.11.2021

Размах ряда чисел - это разность между наибольшим и наименьшим из этих чисел.

Среднее арифметическое ряда чисел - это отношение суммы этих чисел на число слагаемых.

Мода ряда чисел - это число, которое встречается в этом ряду чаще других.

Медиана ряда чисел - это число, стоящее посередине упорядоченного по возрастанию ряда чисел (в случае, если количество чисел нечетное).

Медиана ряда чисел - это полусумма двух стоящих посередине чисел упорядоченного по возрастанию ряда (в случае, если количество чисел четное).

Задание 1.

Размах: 47-25=22;

Среднее арифметическое: \frac{39+33+45+25+33+40+47+38+34+33+40+44+45+32+27}{15}= \frac{555}{15}=37

15

39+33+45+25+33+40+47+38+34+33+40+44+45+32+27

=

15

555

=37 ;

Мода: 33;

Медиана: 38.

Задание 2.

Размах: 44-30=14;

Среднее арифметическое: \frac{36+30+35+36+36+38+40+41+44+43+36+41}{12}= \frac{456}{12}=38

12

36+30+35+36+36+38+40+41+44+43+36+41

=

12

456

=38 ;

Мода: 36;

Медиана: \frac{38+40}{2}=39

2

38+40

=39 .

Задание 3.

Размах: 46-24=22;

Среднее арифметическое: \frac{34+24+39+36+34+39+38+46+38+34+46+41+43+40}{14}= \frac{532}{14}=38

14

34+24+39+36+34+39+38+46+38+34+46+41+43+40

=

14

532

=38 ;

Мода: 34;

Медиана: \frac{38+46}{2}=42

2

38+46

=42 .

Задание 4.

Размах: 58-24=34;

Среднее арифметическое: \frac{39+45+35+24+35+38+58+34+38+35+40+42+45+36+56}{15}= \frac{600}{15}=40

15

39+45+35+24+35+38+58+34+38+35+40+42+45+36+56

=

15

600

=40 ;

Мода: 35;

Медиана: 34.

4,8(55 оценок)
Ответ:
hjhytu
hjhytu
08.11.2021

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не
4,6(34 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ