eˣ - не может равняться нулю, так как функция вида у=аˣ всегда больше нуля.
теперь воспользуемся методом интервалов - + --------------ln4.5----------------------->
Раз функция меняет знак с минуса на плюс, значит x=ln4.5 - точка минимума. e≈2.7 ⇒ дан промежуток [1;3] убедимся, что ln4.5 принадлежит данному промежутку: 1=lne 3=3*1=3lne=lne³ e³≈2.7³=19.683 lne<ln4.5<lne³ - зная, что е>1, знак неравенства сохраняется
e<4.5<e³ - равенство выполняется, значит, действительно ln4.5 принадлежит данному промежутку.
Исходное число должно быть четырехзначным. Пусть исходное число будет ABCD=1000A+100B+10C+D. Из четырехзначного числа ABCD вычли сумму его цифр и получили 2016: 1000A+100B+10C+D-(А+В+С+D)=2016 Раскроим скобки и решим: 1000A+100B+10C+D-А-В-С-D=2016 999А+99В+9С=2016 Сократим на 9: 111А+11В+С=224 Очевидно, что 1<А>3, т.е. А=2 (2000). 111*2+11В+С=224 222+11В+С=224 11В+С=224-222 11В+С=2 С=2-11В, где С и В – натуральные положительные числа от 0 до 9. При значениях В от 1 до 9, С – отрицательное число. Значит В=0, тогда С=2-11*0=2 Получаем число 202D, где D - натуральное положительное число от 0 до 9, т.е. возможные исходные значения от 2020 до 2029. 9 – максимальное значение D, значит наибольшее возможное исходное значение 2029. Проверим: 2029 – (2+2+0+9)=2029-13=2016 ответ: наибольшее возможное исходное значение число 2029
a1=3,9
a2=a1+1d
a3=a1+d2
a4=a1+3d
a5=a1+4d
a6=a1+5d
a7=a1+6d
a8 = a1 + 7d
8,7=12,3-3d
3d=12,3-8,7
d=1,2
a1=12,3-6*1,2
a1=3,9