М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
312645
312645
13.09.2022 21:33 •  Алгебра

Представить в виде многочлена: а) (0,2х-у) * (у+0,2х) б) (3а+7) * (3а-7)

👇
Ответ:
А)  (у²-0,04х²)
Б)  9а²-49
4,5(88 оценок)
Открыть все ответы
Ответ:
MrThomasFeed
MrThomasFeed
13.09.2022
Найдем простую радикальную форму данного в задании корня, для этого умножим его на сопряженное число:
1/(6+√2) * (6-√2) / (6-√2)  = (6-√2) / (6-√2)(6+√2) =(6-√2) / (36-2) = (6-√2)/34
 
если наше уравнение ax^2 + bx + c =0 должно быть c рац. коэфф., то кв. корень из дискриминанта должен быть кратен √2(иначе кв. корню неоткуда взяться), откуда (и из формулы корней кв. ур-я) следует, что второй корень уравнения должен быть (6+√2)/34

пусть a = 1, тогда согласно теореме Виетта
(6+√2)/34  *  (6-√2)/34 = с
(6+√2)/34  + (6-√2)/34 = -b

c = (36-2)/(34*34) = 1/34
b = -12/34 = -6/17

и наше уравнение
x^2 -6/17x + 1/34 = 0
ну или в более человеческом виде (умножаем обе части на 34)
34x^2 - 12x + 1 =0 

   
4,4(59 оценок)
Ответ:
funfup
funfup
13.09.2022
Короче вот пример
Какие неравенства можно решить?

Эта математическая программа подробно решает следующие неравенства с одной переменной.

Линейные
Неравенства сводящиеся к виду: \( ax+b > 0 \) (знак сравнения любой).
Например:

\( 2x-5 \leq 0 ; \)\( 2x-5 > 4-5x ; \)\( 2(x-5)+1 > 4-5x ; \)\( 2x^2-5x+7 \geq 2x^2-6x \)

Квадратные
Неравенства сводящиеся к виду: \( ax^2+bx+c > 0 \) (знак сравнения любой).
Например:

\( 2x^2+4x-5 < 0 ; \)\( 6x-1 > x^2-x ; \)\( (x-2)^2+1 \leq 3x-5; \)и такое тоже \( -4x^3-5x+7 \geq -4x^3+x^2-6x+1 \)

Дробные
Неравенства сводящиеся к виду: \( \Large \frac{a_1x^2+b_1x+c_1}{a_2x^2+b_2x+c_2}\normalsize > 0 \) (знак сравнения любой).

Коэффициенты \( a_1 \) и \( a_2 \) могут быть нулевыми, т.е. и в числителе и в знаменателе дроби может быть и линейный и квадратный многочлен.
Например:

$$ \frac{-x^2+2x-3}{4x+1} > -3x-1 ; \frac{5}{4(x+1)(x-3)-x+6} < 2x-5 ; \frac{4x^2-2}{1-x-3x^2} < 2 ; $$и т.д.

Разбитые на множители
Если в правой части - ноль, а в левой части полином(ы) разбит(ы) на линейные множители, т.е. множители вида \( ax+b \) 
Например:

$$ -(2x-1)x(x-2)^2 > 0 ; \frac{-1}{4(x+1)(x-3)^3} < 0 ; \frac{-4(2-3x)(2-x)}{x^2+x-5} \geq 0 ; $$и т.д.
4,7(89 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ