Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Объяснение:
P(3)=a·3²+b·3+c 0= 9a +3b+c
P(1)=a·1+b·1+c 1= a + b +c
P(-1)=a·(-1)²+b·(-1)+c 0= a - b + c
Решаем систему трех уравнений с тремя неизвестными:
0= 9a +3b+c
1= a + b +c ⇒ сложим второе и третье уравнение : 2a+2c=1
0= a - b + c ⇒ вычтем из второго третье: 2b=1
0= 9a +3b+c
2a+2c=1 ⇒выразим с через c=(1-2a)/2 и подставим в первое урав
2b=1 ⇒ b=1/2 подставим в первое уравнение.
0= 9a+(3/2)+(1-2a)/2
0=18a+3+1-2a
16a=-4
a=-1/4
c=3/4
Итак, Р(х)= (-1/4)х²+(1/2)х+(3/4)