Перед нами квадратное неравенство 2х² + х -6 ≤ 0.
Для начала решим квадратное уравнение 2х² + х -6
Решаем квадратное уравнение
x 1 = -2
x 2 = 1.5
Интервалы знакопостоянства
Определяем интервалы, на которых функция не меняет знак - интервалы знакопостоянства.
( -∞ , -2) ( -2 , 1.5) ( 1.5 , +∞)
Определяем, какой знак принимает функция на каждом интервале.
( -∞ , -2) плюс
( -2 , 1.5) минус
( 1.5 , +∞) плюс
Записываем интервалы, удовлетворяющие неравенству.
( -2 , 1.5)
Проверяем входят ли концы интервалов в ответ.
[-2 , 1.5]
ФИНАЛЬНЫЙ ОТВЕТ:
x принадлежит интервалу [-2 , 1.5]
А нам в ответ нужно записать ТОЛЬКО ЦЕЛЫЕ ЧИСЛА
ответ: -2; -1; 0; 1.
Объяснение:
Эта задача имеет два принципиально разных решения.
А) считаем, что все голубые шары одинаковы между собой, и все розовые тоже одинаковы.
Тогда:
1) двумя : вынуть розовый шар или вынуть голубой шар.
2) тоже двумя : сначала вынуть розовый шар, потом голубой, или наоборот, сначала голубой шар, а потом розовый.
Б) считаем, что все шары разные, например, имеют номера, как в бильярде.
Тогда:
.
Допустим, мы первым вынимаем голубой шар. Это 6 разных .
За ним вынимаем розовый, это 8 разных .
Всего вынуть сначала голубой шар, потом розовый.
И ещё вынуть, наоборот, сначала розовый шар, потом голубой.
=(25a-125+2a³+10a²+50a+a³+25a²)/(a-5)(a²+5a+25)=
=(3a³+35a²+75a-125)/(a-5)(a²+5a+25)
2)a-5 +15a/(a-5)=(a²-10a+25+15a)/(a-5)=(a²+5a+25)/(a-5)
3)(3a³+35a²+75a-125)/(a-5)(a²+5a+25)*(a²+5a+25)/(a-5)=(3a³+35a²+75a-125)/(a-5)²