С этого метода постановки практически всегда можно решить систему уравнений.
Алгоритм решения системы двух уравнений с двумя переменными методом подстановки:
1. из любого (обычно более уравнения системы выразить одно неизвестное через другое,
например, x через y из первого уравнения системы;
(Чтобы выразить неизвестное, нужно выполнить два условия:
1-перенести неизвестное, которое хотим выразить, в левую часть уравнения;
2- разделить и левую и правую часть уравнения на нужное число так, чтобы коэффициент при неизвестном стал равным единице. )
2. подставить полученное выражение в другое (второе) уравнение системы вместо x;
3. решить уравнение с одним неизвестным относительно y (найти y);
4. подставить найденное на третьем шаге значение y в уравнение,
полученное на первом шаге, вместо y и найти x;
5. записать ответ мой ответ в лучшие)))
Шаршының бір қабырғасын 2 дм-ге, ал екіншісін 4 дм-ге
қысқартты. Сонда ауданы 24 дм(2)аспайтын тіктөртбұрыш шыкты
Шаршының қабырғасы неге тең?
Объяснение:
Шаршының бір қабырғасын 2 дм-ге, ал екіншісін 4 дм-ге
қысқартты. Сонда ауданы 24 дм(2)аспайтын тіктөртбұрыш шыкты
Шаршының қабырғасы Шаршының бір қабырғасын 2 дм-ге, ал екіншісін 4 дм-ге
қысқартты. Сонда ауданы 24 дм(2)аспайтын тіктөртбұрыш шыкты
Шаршының қабырғасы неге тең?неШаршының бір қабырғасын 2 дм-ге, ал екіншісін 4 дм-ге
қысқартты. Сонда ауданы 24 дм(2)аспайтын тіктөртбұрыш шыкты
Шаршының қабырғасы негеШаршының бір қабырғасын 2 дм-ге, ал екіншісін 4 дм-ге
қысқартты. Сонда ауданы 24 дм(2)аспайтын тіктөртбұрыш шыкты
Шаршының қабырғасы неге тең? тең?ге тең?
Пусть х кг – количество олова в новом сплаве. Так как новый сплав весит 400 кг и в нём находится 30 % цинка, то он содержит 400*30/100=120 кг, а во втором сплаве (120-y) кг цинка. По условию задачи процентное содержание цинка в двух сплавах равно, следовательно, можно составить уравнение: 100y/150=100(120-y)/250
Из этого уравнения находим, что у=45. Поскольку первый сплав содержит 40% олова, то в 150 кг первого сплава олова будет 150*40/100=60 кг, а во втором сплаве олова будет (х-60) кг. Поскольку второй сплав содержит 26% меди, то во втором сплаве меди будет 250*26/100=65 кг. Во втором сплаве олова содержится (х-60) кг, цинка 120-45=75 (кг), меди 65 кг и, так как весь сплав весит 250 кг, то имеем:
х-60+75+65=250, откуда х=170 кг
ответ: 170 кг.