Объяснение:
1) (a-5)(a+3) < (a+1)(a-7)
a^2-5a+3a-15 < a^2+a-7a-7
-2a-15 < - 6a-7
4a < 8
a < 2
Это неравенство верно вовсе не при любых а, а только при а меньше 2.
2) [5x+2] <= 3
Видимо, квадратные скобки это модуль. Неравенство распадается на два:
а) 5x+2 >= - 3
5x >= - 5
x >= - 1
б) 5x+2 <= 3
5x <= 1
x <= 1/5
Целые решения: - 1; 0
3) Пусть одна сторона равна 5 см, а другая больше неё в 4 раза, то есть 20 см.
Тогда периметр равен 2*(5+20) = 2*25 = 50 см.
Если первая сторона меньше 5 см, то вторая меньше 20 см, а периметр меньше 50 см.
Объяснение:
№1
В фирме такси в данный момент свободно 40 машин: 17 чёрных, 15 жёлтых и 8 зелёных.
По вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчику.
Найдите вероятность того, что к нему приедет жёлтое такси.
Решение: (ответить на вопросы)
1) Найти количество всех возможных вариантов (количество всех свободных машин) 40
2) Определить количество благоприятных вариантов ( количество жёлтых такси) 15
3) Найдите вероятность благоприятных вариантов ( применить формулу вероятности, результат перевести в десятичную дробь)
Формула
Вероятность = число благоприятных вариантов / число возможных вариантов
15/40= 0,375
4) ответ. 0,375
№2
В среднем из 300 садовых насосов, поступивших в продажу, 60 подтекает.
А) Найдите вероятность того, что случайно выбранный для контроля насос подтекает.
60/300 =0,2
Б) Найдите вероятность того, что случайно выбранный для контроля насос будет исправный.
1-0,2=0.8
или можно по другому решить
300-60=240 насосов исправных
240/300=0.8
3^x+2 +3^x =30
3^x=a
9a+a=30
a=3
3^x=3
x=1