М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kerikan
kerikan
14.02.2022 13:55 •  Алгебра

Y=x^2/x-2 провести полное исследование функции и построить график

👇
Ответ:
228Cracker228
228Cracker228
14.02.2022

решение во вложении

 

4,6(12 оценок)
Открыть все ответы
Ответ:
nOMOshHuK2
nOMOshHuK2
14.02.2022

1.

6sin^2x-3sinx*cosx-cos^2x=sin^2x+cos^2x

5sin^2x-3sinx*cosx-2cos^2x=0   /:cos^2x≠0

5tg^2x-3tgx-2=0

замена tgx=t

5t^2-3t-2=0

t=1

t=-2/5

обратная замена:

1) tgx=1

x=pi/4+pik, k∈Z

2) tgx=-2/5

x=-arctg(2/5)+pik, k∈Z

 

pi/4+pik, k∈Z

-arctg(2/5)+pik, k∈Z

 

2.

5sin^2x+3sinx*cosx-2cos^2x=3sin^2x+3cos^2x

2sin^2x+3sinx*cosx-5cos^2x=0    /:cos^2x≠0

2tg^2x+3tgx-5=0

замена tgx=t

2t^2+3t-5=0

t=1

t=-5/2

обратная замена:

1) tgx=1

x=pi/4+pik, k∈Z

2) tgx=-5/2

x=-arctg(5/2)+pik, k∈Z

 

pi/4+pik, k∈Z

-arctg(5/2)+pik, k∈Z

4,4(69 оценок)
Ответ:
Kuanova2005
Kuanova2005
14.02.2022
Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k y=kx+m : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором y=4- \frac{1}{3}x; k=- \frac{1}{3}. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения x_1; x_2, два произвольных числа, но x_1\ \textless \ x_2 . Пусть мы имеем функцию y=f(x), тогда вычисляем значения функции в этих двух точках, имеем f(x_1) и f(x_2), так вот, если x_1\ \textless \ x_2; f(x_1)\ \textless \ f(x_2);, тогда функция возрастающая, если же x_1\ \textless \ x_2; f(x_1)\ \textgreater \ f(x_2), то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)y=x^3+1; x_1=-2; f(x_1)=(-2)^3+1=-7; x_2=4;x_1\ \textless \ x_2 \\ f(x_2)=4^3+1=65; f(x_1)\ \textless \ f(x_2), т.е. функция возрастающая. А вот задание с y= \frac{x^2}{2} не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) y= \frac{x^2}{2}; y'= \frac{2x}{2}=x;. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): x_1=1; x_2=2; x_1\ \textless \ x_2; f(x_1)= \frac{1}{2};f(x_2)=2; f(x_1)\ \textless \ f(x_2), функция возрастает, что и требовалось доказать.
4,5(65 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ