М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Синуэлла
Синуэлла
02.05.2022 11:15 •  Алгебра

Сократите дробь 9x^2-6x+1/3x^2-7x+2

👇
Ответ:
entogenes
entogenes
02.05.2022
В числителе полный квадрат: (3x - 1)^2
для знаменателя D=49-4*3*2 = 5^2
корни (7 +- 5)/6
3x^2 - 7x + 2 = 3(x - 2)(x - 1/3) = (x - 2)(3x - 1)
ответ: (3х - 1) / (х - 2)
4,6(33 оценок)
Открыть все ответы
Ответ:
romanowacristi
romanowacristi
02.05.2022

Объяснение:

Первая система линейных уравнений:

\left \{ \begin {array}{cccc} x1+2*x2-x3+3*x4-x5+2*x6=0 \\ 2*x1-x2+3*x3-4*x4+x5-x6=0 \\ 3*x1+x2-x3+2*x4+x5+3*x6=0 \\ 4*x1-7*x2+8*x3-15*x4+6*x5-5*x6=0 \end{array}\right

1-ое уравнение умножаем на -2 и складываем со 2-ым уравнением.

1-ое уравнение умножаем на -3 и складываем с 3-им уравнением.

1-ое уравнение умножаем на -4 и складываем с 4-ым уравнением.

Получаем нули при x1 во всех уравнениях, кроме 1-го:

\left \{ \begin {array}{cccc} x1+2*x2-x3+3*x4-x5+2*x6=0 \\ 0*x1-5*x2+5*x3-10*x4+3*x5-5*x6=0 \\ 0*x1-5*x2+2*x3-7*x4+4*x5-3*x6=0 \\ 0*x1-15*x2+12*x3-27*x4+10*x5-13*x6=0 \end{array}\right

2-ое уравнение умножаем на -1 и складываем с 3-им уравнением.

2-ое уравнение умножаем на -3 и складываем с 4-ым уравнением.

Получаем нули при x2 во всех уравнениях, кроме 1-го и 2-го:

\left \{ \begin {array}{cccc} x1+2*x2-x3+3*x4-x5+2*x6=0 \\ 0*x1-5*x2+5*x3-10*x4+3*x5-5*x6=0 \\ 0*x1+0*x2-3*x3+3*x4+x5+2*x6=0 \\ 0*x1+0*x2-3*x3+3*x4+x5+2*x6=0 \end{array}\right

3-ье и 4-ое уравнения получились одинаковыми, 4-ое отбрасываем:

\left \{ \begin {array}{ccc} x1+2*x2-x3+3*x4-x5+2*x6=0 \\ 0*x1-5*x2+5*x3-10*x4+3*x5-5*x6=0 \\ 0*x1+0*x2-3*x3+3*x4+x5+2*x6=0\end{array}\right

Получилась система, из которой можно получить фундаментальное решение:

x4, x5, x6 ∈ R

x3=\frac{3*x4+x5+2*x6}{3}=x4+\frac{x5}{3}+\frac{2*x6}{3}

x2=\frac{5*x3-10*x4+3*x5-5*x6}{5} =x3-2*x4+\frac{3*x5}{5} -x6=\\ =x4+\frac{x5+2*x6}{3} -2*x4+\frac{3*x5}{5} -\frac{3*x6}{3}=-x4+\frac{14*x5}{15}-\frac{x6}{3}

x2=-x4+\frac{14*x5}{15}-\frac{x6}{3}

x1=-2*x2+x3-3*x4+x5-2*x6=\\ =2*x4-\frac{28*x5}{15}+\frac{2*x6}{3} +x4+\frac{5*x5}{15}+\frac{2*x6}{3} -3*x4+\frac{15*x5}{15}-\frac{6*x6}{3} =\\ =0*x4 -\frac{8*x5}{15}-\frac{2*x6}{3}

x1=-\frac{8*x5}{15}-\frac{2*x6}{3}

Вторая система решается точно также.

\left \{ \begin{array}{cccc} x1-2*x2+x3-x4+x5=0 \\ 2*x1+x2-x3+2*x4-3*x5=0 \\ 3*x1-2*x2-x3+x4-2*x5=0 \\ 2*x1-5*x2+x3-2*x4+2*x5=0 \end{array}\right.

1-ое уравнение умножаем на -2 и складываем со 2-ым уравнением.

1-ое уравнение умножаем на -3 и складываем с 3-им уравнением.

1-ое уравнение умножаем на -2 и складываем с 4-ым уравнением.

Получаем нули при x1 во всех уравнениях, кроме 1-го:

\left \{ \begin{array}{cccc} x1-2*x2+x3-x4+x5=0 \\ 0*x1+5*x2-3*x3+4*x4-5*x5=0 \\ 0*x1+4*x2-4x3+4*x4-5*x5=0 \\ 0*x1-x2-x3+0*x4+0*x5=0 \end{array}\right.

4-ое уравнение ставим 2-ым, от этого система не меняется:

\left \{ \begin{array}{cccc} x1-2*x2+x3-x4+x5=0 \\ 0*x1-x2-x3+0*x4+0*x5=0 \\ 0*x1+5*x2-3*x3+4*x4-5*x5=0 \\ 0*x1+4*x2-4x3+4*x4-5*x5=0 \end{array}\right.

2-ое уравнение умножаем на 5 и складываем с 3-им уравнением.

2-ое уравнение умножаем на 4 и складываем с 4-ым уравнением.

Получаем нули при x2 во всех уравнениях, кроме 1-го и 2-го:

\left \{ \begin{array}{cccc} x1-2*x2+x3-x4+x5=0 \\ 0*x1-x2-x3+0*x4+0*x5=0 \\ 0*x1+0*x2-8*x3+4*x4-5*x5=0 \\ 0*x1+0*x2-8*x3+4*x4-5*x5=0 \end{array}\right.

3-ье и 4-ое уравнения получились одинаковыми, 4-ое отбрасываем:

\left \{ \begin{array}{ccc} x1-2*x2+x3-x4+x5=0 \\ 0*x1-x2-x3+0*x4+0*x5=0 \\ 0*x1+0*x2-8*x3+4*x4-5*x5=0 \end{array}\right.

Получилась система, из которой можно получить фундаментальное решение:

x4, x5 ∈ R

x3=\frac{4*x4-5*x5}{8}=\frac{x4}{2} -\frac{5*x5}{8}

x2=-x3=-\frac{x4}{2}+\frac{5*x5}{8}

x1=2*x2-x3+x4-x5=-\frac{2x4}{2}+\frac{10*x5}{8} -\frac{x4}{2}+\frac{5*x5}{8} +\frac{2*x4}{2}-\frac{8*x5}{8} =\\ =-\frac{x4}{2}+\frac{7*x5}{8}

x1=-\frac{x4}{2}+\frac{7*x5}{8}

4,6(52 оценок)
Ответ:
slia1984
slia1984
02.05.2022
 Решение
Графиком функции является парабола, ветви которой направлены вверх. 1)      D (f) =R , т.к. f – многочлен. 2)       f(-х) = (-х)2  - 4(-х)  - 5 = х2 + 4х – 5   Функция поменяла знак частично, значит,  f не является ни чётной,  ни нечётной. 3)      Нули функции: При х = 0     у = - 5; (0;-5)  при у = 0      х2 - 4х – 5 = 0 По теореме, обратной теореме Виета х1 = -1; х2 = 5  (-1;0); (5;0). 4)      Найдём производную функции f: f ′(х) = 2х – 4 Найдём критические точки: f ′(х) = 0; 2х – 4 = 0; х = 2 – критическая точка   
                f ′(х)                      -                                           + f (х)                                                                                                2                                                            х
                                                   min               5) Найдём промежутки монотонности: Если функция возрастает, то   f ′(х) > 0 ;  2х – 4  > 0; х > 2. Значит,  на промежутке (2; ∞) функция возрастает. Если функция убывает, то     f ′(х) < 0; 2х – 4 < 0; х < 2. Значит, на промежутке (- ∞; 2)  функция убывает. 6)      Найдём координаты вершины параболы: Х =Y =  22  - 4*2 – 5 = -9 (2;-9) – координаты вершины параболы.  
7) Область изменения функции Е (у) = (-9; ∞)   8)      Построим график функции:   
                             у     
                                                   -1       2       5                                                    -5                                                х
4,4(81 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ