Вычислите: если b : а = 1: 2 представьте выражение в виде , где а, b и c - целые числа: определите, при каких натуральных n значения данных выражений являются целыми числами:
если b : а = 1:2 ⇔ (a/b =2._,без дроби). =1 -ab/(a²+b²) = 1 -(a/b)/((a/b)² +1) =1 -2/(4+1) =1 -2/5 =3/5. или сразу =a²(1 -b/a+(b/a)²) / a²(1+(b/a)²) = (1 -b/a+(b/a)²) / (1+(b/a)² )= (1 -1/2+1/4)/(1+1/4) =(3/4)/(5/4) =3/5 =0,6. или =(a/b -1+b/a)/(a/b +b/a) =(2 -1+1/2)/(2+1/2) =(3/2)/(5/2) =3/5. (разделил одновременно числитель и знаменатель на a*b ).
Представить выражение в виде , где а, b и c - целые числа: =(2x² -2x +7x -7 +4)/(x-1) =(2x(x-1) +7(x-1) +4)/(x-1) =2x +7 +4/(x-1). a=2;b=7; c=4. или по другому : =(ax² -ax +bx-b +c)/(x-1) = (ax² +(b-a)x -(b -c))/(x-1). {a =2 , b-a=5 ; b-c =3⇔{a=2 ;b=a+5; c=b-3 ⇔{a=2; b=7; c=7 -3 =4. 2x +7 +4/(x-1).
Определите, при каких натуральных n значения данных выражений являются целыми числами: = (n² +2n +n+2 -4)/(n+2)= n+1 - 4/(n+2) ⇒n=2 (делители числа 4 : {± 1, ± 2, ± 4} , но здесь натуральные)
Пусть х - это количество пятирублевых монет. Тогда у - количество рублевых монет. У нас две неизвестные, значит, нам нужно составить систему из двух уравнений, которые отражают условие нашей задачи: х+y=200; 5x+y=800; Я люблю решать методом алгебраического сложения (Х складываем с Х, У складываем с У, числа - с числами). Для этого нам нужно "убрать" одну переменную (т. е., когда мы сложим их, у нас получится ноль. Например: 2у-2у=0). Для этого часто нужно домножить одно, или оба уравнения на какое-либо число. Так и делаем: х+у=200 | * -1. Получается система: -х-у=-200; 5х+у=800. Складываем уравнения: 5х-х+у-у=800-200; 4х=600 Находим Х: х=600/4=150 Теперь одна переменная нам известна. Подставляем в любое из уравнений и находим вторую: 150+у=200; у=200-150=50
Допустим, что скорость первого велосипедиста = х км/ч,
Поскольку по условию задания скорость одного на 3 км/ч больше скорости другого, значит скорость другого велосипедиста = х-3 км/ч
Время в пути велосипедистов = расстояние между селами / скорость велосипедистов, значит
36/х - время в пути первого велосипедиста
36/ (х-3) - время в пути второго велосипедиста
По условию задания расстояние между селами один велосипедист преодолевает на 1 час быстрее другого.Поэтому выходит, что первый велосипедист тратит на 1 час меньше нежели второй на преодоление расстояния между селами А значит 36/х +1 = 36/ (х-3)
36/х - 36/ (х-3)=-1
(36*(х-3))/(х*(х-3)) - (36*х)/(х*(х-3))=-1
(36х-108)/(х*(х-3)) - (36х)/(х*(х-3))=-1
(36х-108 - 36х)/(х*(х-3))=-1
-108=-(х*(х-3))
108=х²-3х
х²-3х-108=0
Теперь решим квадратное уравнение
Выпишем коэффициенты квадратного уравнения: a = 1,
=1 -ab/(a²+b²) = 1 -(a/b)/((a/b)² +1) =1 -2/(4+1) =1 -2/5 =3/5.
или сразу
=a²(1 -b/a+(b/a)²) / a²(1+(b/a)²) = (1 -b/a+(b/a)²) / (1+(b/a)² )=
(1 -1/2+1/4)/(1+1/4) =(3/4)/(5/4) =3/5 =0,6.
или =(a/b -1+b/a)/(a/b +b/a) =(2 -1+1/2)/(2+1/2) =(3/2)/(5/2) =3/5.
(разделил одновременно числитель и знаменатель на a*b ).
Представить выражение в виде , где а, b и c - целые числа:
=(2x² -2x +7x -7 +4)/(x-1) =(2x(x-1) +7(x-1) +4)/(x-1) =2x +7 +4/(x-1).
a=2;b=7; c=4.
или по другому :
=(ax² -ax +bx-b +c)/(x-1) = (ax² +(b-a)x -(b -c))/(x-1).
{a =2 , b-a=5 ; b-c =3⇔{a=2 ;b=a+5; c=b-3 ⇔{a=2; b=7; c=7 -3 =4.
2x +7 +4/(x-1).
Определите, при каких натуральных n значения данных выражений являются целыми числами:
= (n² +2n +n+2 -4)/(n+2)= n+1 - 4/(n+2) ⇒n=2 (делители числа 4 : {± 1, ± 2, ± 4} , но здесь натуральные)