1) Введем функцию: f(x)=(х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3, f(x)=0, (х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3=0 2) Найдем нули числителя и знаменателя: Числитель: -Все скобки приравниваем к нулю: х∧2+2х+1=0 D<0, f(x)>0 х-любое число x-3=0 x=3 x+2=0 x=-2 Расставляем полученные числа на числовую прямую, нам нужен промежуток с плюсом, т.к. в условии функция >0, получаем х принадлежит(-бесконечности; 2),(3; до +бесконечности), Знаменатель: х∧2+2х-3 не равно 0 D=16 x=-3 x=1 Так же на числовой прямой расставляем полученные корни, получаем х принадлежит (-бесконечности; -3),(1; + бесконечности) Сопоставляем полученные промежутки на общую числовую прямую, получаем конечный ответ х принадлежит (-бесконечности; -3),(3; + бесконечности)
7х+3у=1, 2х-6у=-10 выражаем в каждом уравнение у через х: 3у=1-7х, у=1-7х/3 -6у=-10-2х, у=10+2х/6 у= 1-7х 3 у= 5+х 3 Это линейные функции, график "прямая" Строим график 1 функции х| 0 | 1| y|1/3|-2| построили прямоугольную систему координат и две точки А(0;1/3),В(1;-2) соединили эти точки прямой. Строим график 2 функции: х| 0 | 1 | y|1 1/3| 2 | В то же прямоугольной системе координат строим точки М(0;1 1/3),Р(1;2) соединяем точки прямой. Прямые пересекаются в точке Д(-1/2;1 1/2) ответ: (-1/2; 1 1/2)
cos^2x-sin^2x+sin^2x=0.5
cosx=корень(2)/2 cosx=-корень(2)/2
x1=п/4+2пn x2=-п/4+2пn
n=1, x1=9п/4 x2=7п/4
а)x=п/4+2пn; -п/4+2пn
б)9п/4;7п/4