Объяснение:
2(6-2x)(7-3x)-12(2x-1²)>4(2-3x)(3x+2)-8(2x-7) |2
42-18x-14x+6x²-12x+6>2(4-9x²)-8x+28
6x²-44x+48>8-18x²-8x+28 |2
3x²-22x+24>-9x²-4x+18
3x²+9x²-18x+6>0
12x²-18x+6>0 |6
2x²-3x+1>0
Допустим 2x²-3x+1=0
2x²-x-2x+1=0
(2x²-2x)-(x-1)=0
2x(x-1)-(x-1)=0
(2x-1)(x-1)=0
2x-1=0; 2x=1; x₁=1/2=0,5
x-1=0; x₂=1
Для определения знака функции возьмём пробную точку на интервале (-∞; 0,5), например, 0:
2·0²-3·0+1=0-0+1=1; 1>0
+ - +
°°>x
0,5 1
ответ: x∈(-∞; 0,5)∪(1; +∞).
3, 6, 12, 24
Объяснение:
Пусть члены геометрической прогрессии: х, xy, xy2 , xy3 . y -знаменатель прогрессии.
Обозначим a1=x+10, a2=xy+11, a3=xy2 +9, a4=xy3 +1 — члены арифметической прогрессии.
Известно, что a2-a1 = a3-a2 = a4-a3 = d.
Составляем систему:
a2-a1=a4-a3 xy+11 - xy^2 -10 = xy^3 +1- xy^2 -9
a2-a1=a3-a2 xy+11 - xy^2 -10 = xy^2 +9- xy-11
a) xy^3 - xy^2 - xy+x = 9 x[y^2(y-1)-(y-1)] =9 xy-1)(y-1)(y+1)=9
b) xy^2-2xy +x = 3 x(y^2-2y+ 1) = 3 x(y-1)^2= 3
Делим (a) на (b)
y+1 = 3;
y=2;
из (b) x= 3.
Числа 3, 6, 12, 24 - геометрическая прогрессия.
13, 17, 21,25 - арифметическая.
Обозначает пересечение решений, то есть только такие решения, для которых выполняются ВСЕ равенства (неравенства) системы.
Совокупность - значок [
Обозначает объединение решений, то есть такие решения, для которых выполняется ХОТЯ БЫ ОДНО равенство (неравенство) системы.