М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ronnedtoby
ronnedtoby
04.01.2021 08:30 •  Алгебра

Решите неравенство (x+6)(x-9)< 0

👇
Ответ:
марат172
марат172
04.01.2021
Сначала неравенство приравниваем к нулю, находим корни, размечаем на координатной прямой и решаем методом интервалов: подставляем в каждый промежуток число и следим за знаками неравенства в каждой скобке.
Решите неравенство (x+6)(x-9)< 0
4,8(59 оценок)
Открыть все ответы
Ответ:
1. Область определения х∈(-∞;-3)U(-3;3)U(3;+∞).
2. Находим производную
   y`=(\frac{35}{ x^{2} -9})`=- \frac{35}{(x^2-9)^2}\cdot(x^2-9)`=- \frac{70x}{x^2-9}
3. Находим точки, в которых производная равна 0.
   у`=0    ⇒  x=0
4. Находим промежутки возрастания и убывания, для этого на области определения отмечаем точки, в которых производная равна 0 и расставляем знаки производной.

__+___(-3)___+__(0)___-___(3)__-___

5. На (-∞;-3) и на (-3;0) функция возрастает.
   На (0;3) и на (3;+∞) функция убывает.
х=0 - точка локального максимума функции, так как производная меняет знак с + на -.
График функции см. на рисунке.

Этот график не может быть получен из графика у=35/х² так как имеет совершенно другой вид у=35/(х-3)(х+3) 
Функция задана формулой g(x)=35/(x^2 -9) как построить данную функцию? (понятно, что она сдвинется н
4,5(36 оценок)
Ответ:
dalakoff
dalakoff
04.01.2021
Левая часть неравенства должна существовать, поэтому 
a + x >= 0,
a - x >= 0

Переписываем систему в виде
-a <= x <= a,
|x| <= a
откуда видно, что a >= 0.
Можно сразу записать, что если a < 0, то решений нет.

Тогда обе части исходного неравенства неотрицательные, и можно возводить в квадрат.
a + x + 2sqrt(a^2 - x^2) + a - x > a^2
sqrt(a^2 - x^2) > a(a - 2)/2

Если правая часть отрицательна, то решение неравенства - все значения, при которых корень существует.
a(a - 2)/2 < 0 при 0 < a < 2, так что еще одна часть ответа такова: если 0 < a < 2, то -a <= x <= a.

Осталось рассмотреть случай, когда a(a - 2) >= 0. Тогда вновь можно возводить неравенство в квадрат.
a^2 - x^2 > (a^4 - 4a^3 + 4a^2)/4
x^2 < a^3 (4 - a)/4.

У этого неравенства есть шанс иметь решения, если правая часть строго положительна, поэтому предпоследняя часть ответа: если a = 0 или a >= 4, решений нет. Осталось рассмотреть последний случай 2 <= a < 4.

Заметим, что при таких a правая часть меньше a^2, ведь 
a^3 (4 - a) / 4 / a^2 = a (4 - a) / 4 < 2 * (4 - 2) / 4 = 1 (известно, что квадратичная парабола a (4 - a) / 4 достигает максимального значения в вершине), поэтому все корни существуют, и последняя часть ответа: если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2.

Собираем всё в одно и получаем ответ.
ответ. Если 0 < a < 2, то -a <= x <= a; если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2, для остальных a решений нет.
4,5(92 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ