Пусть расстояние между А и В (s) км, скорость1 первого (х) км/час --ее нужно найти, скорость2 (2х/3) км/час --она в 3/2 раза меньше скорости1, скорость3 ((2х/3)-6) км/час --она на 6 км/час меньше скорости2 время в пути первого: (s/х) час время в пути второго: (s/(2х/3))=(3s)/(2x) час время в пути третьего: (s)/((2х/3)-6)=(3s)/(2x-18) час 10 минут = (1/6) часа 15 минут = (1/4) часа получим систему уравнений: 3s/(2х) = (s/х) + (1/6) второй приехал позже --> время больше 3s/(2х-18) = 3s/(2х) + (1/4) третий приехал позже второго
3s/(2х) = (6s+х)/(6x) 3s/(2х-18) = (6s+х)/(4x)
9sх = x(6s+х) 6sх = (x-9)(6s+х)
3sx = x² 54s+9x = x²
9x = (3x-54)s ---> s = 3x/(x-18) x² = 3x * 3x/(x-18) x-18 = 9 x = 27 (км/час) скорость первого велосипедиста s = 3*27/9 = 9 (км)
ПРОВЕРКА: скорость второго велосипедиста: 27:1.5 = 27*2/3 = 18 км/час его (второго) время в пути: 9:18 = 1/2 часа = 30 минут скорость третьего велосипедиста: 18-6 = 12 км/час его (третьего) время в пути: 9:12 = 3/4 часа = 45 минут время первого велосипедиста в пути: 9:27 = 1/3 часа = 20 минут второй приехал на 30-20=10 минут позже первого))) второй приехал на 30-45=-15 минут раньше третьего)))
Формула цилиндра V=ПиR^2*H ПиR^2 это уже дано 4Пи , рассмотрим это с другой стороны , чтобы получить 4п по формуле площади основания ПиR^2 это надо чтобы радиус у цилиндра был 2 т.е. 2 в квадрате умножить на пи получаем 4п.Так вот теперь мы знаем что диаметр у нас 4 .Рассмотрим треугольник который состоит из осевого сечения и диаметра цилиндра нам надо найти высоту, чтобы посчитать по формуле объем цилиндра.Так вот в том треугольнике нам известна гипотенуза и снизу сторона. Считаем по теореме пифагора h^2=5^2-4^2 h^2=25-16 h=3 подставляем в формулу цилиндра V=пиR^2H V=Пи*4*3 V=12пи
| x | =1 значит одно из двух или x = - 1 или x = 1 . * * * x =± 1 * * *
| x | =0 следует x =0 (+ 0 или - 0 одно и то же )
| x | = - 5 не имеет решения (не может быть |x | = - 5 ,т.к. модуль неотрицательное число).
| x | =1 ,3 .
x = -1,3 или x = -1,3 .
Определение модуля :
|x| = - x , если x <0 (x отрицательное число) ;
|x | = 0, если x= 0 ;
|x| = x , если x >0 (x положительное число).
второй случай (x= 0 ) можно объединить с первым или со вторым
|x| = - x , если x <0 ;
|x| = x , если x ≥0 .