1.1.D(y)=[-5;4]
2.Е(у)=[-1;3]
3.Нули функции х=-3; х=3.5
4. Промежутки знакопостоянства. у>0 при х∈[-5;-3)∪(-3;3.5)
y<0 при х∈(3.5; 4]
5. Функция возрастает при х∈[-3;1] и убывает при х∈[-5;-3];[1;4]
6. Наибольшее значение у=3; наименьшее у=-1
7.Ни четная, ни нечетная.
8 Не периодическая.
2. f(10)=100-80=20
f(-2)=4+16=20
f(0)=0
5. 1.D(y)=(-∞;+∞)
2.Е(у)=(-∞;-1]
3.Нули функции нет
4. Промежутки знакопостоянства. у>0 ни при каких х, а при х∈(-∞;+∞)
y<0
5. Функция возрастает при х∈(-∞;-3] и убывает при х∈[-3;+∞)
6. Наибольшее значение у=-1; наименьшего нет
7.Ни четная, ни нечетная.
8 Не периодическая.
Объяснение:
А) Подставляем везде места х цифру 0
3×0/0^2-3×0 = 0
1) 3×0=0
2) 0^2=0
3) 3×0=0
ответ: 0
Подставляем цифру 13 места х
3×13/13^2-3×13= 39/169-39 = 39/130 = 0.3 или 3/10
1) 3×13=39
2) 3^2=169
3) 169-39=130
4) 39:130=0.3 , а если в дробях то 39/130 сокращаем на 13=3/10
ответ: 0.3 или можно также записать 3/10
Б) Подставляем вместо х цифру 3
12(3-3)/24=12/24=2
1) Всегда сначала решаем то что в скобках (3-3) =0
2) Остаётся 12/24 здесь сократим на 12 будет =2
ответ: 2
Подставляем 5 вместо х
12(5-3)/24= 12×2/24=24/24=1
1) Сначала то что в скобках (5-3)=2
2) 12×2=24
3) 24/24=1
ответ:1
3x=π/3 +2πn,n∈Z U 3x=2π/3+2πk,k∈Z
x=π/9+2πn/3,n∈Z U x=2π/9+2πk,k∈Z
1)-3π/2≤π/9+2πn/3≤π
-29≤12n≤16
-2 5/12≤n≤1 1/3
n=-2⇒x=π/9-4π/3=-11π/9
n=-1⇒x=π/9-2π/3=-5π/9
n=0⇒x=π/9
n=1⇒x=π/9+2π/3=7π/9
2) -3π/2≤2π/9+2πk/3≤π
-31≤12k≤14
-2 7/12≤k≤1 1/6
k=-2⇒x=2π/9-4π/3=-10π/9
k=-1⇒x=2π/9-2π/3=-4π/9
k=0⇒x=2π/9
k=1⇒x=2π/9+2π/3=8π/9