Чтобы уметь выражать косинус через синус с формул приведения, сначала нужно разобраться с этими формулами. Их довольно много, вот парочка из них: sin(90-a)=cosa sin(180+a)=-sina cos(270+a)=sina cos(360+a)=cosa Именно этими углами(90(π/2) , 180(π), 270(3π/2), 360(2π)) мы пользуемся в формулах приведения. И ещё одно, угол a∈(0;90). Но чтобы их все не запоминать, нужно запомнить закон с которого можно вывести любую из них. Итак нужно запомнить в каких четвертях cos, sin, tg, ctg положительны или отрицательны. Всё это есть во вложении. Легче запомнить если кое что уяснить sin положителен когда положительна ось ординат(её часто обозначают y), cos - когда положительная ось абсцисс(x), tg и ctg (это sin/cos(cos/sin)) поэтому они положительны когда одновременно положительны или отрицательны cos и sin. С этим вроде бы разобрались. Теперь ещё один закон: при углах 90 и 270 функция изменяется на кофункцию. при углах 180 и 360 функция не изменяется. Изменение на кофункцию - замена косинуса синусом(и наоборот) и замена тангенса котангенсом(и наоборот).
Теперь попробуем решить ваш пример: cos(π/9) нам нужно заменить на sin. Вспомним что при углах π/2 и 3π/2 функция изменяется на кофункцию, поэтому представим π/9 в виде суммы(разности) с одним из этих углов: π/2=9π/18 π/9=2π/18=9π/18 - 7π/18 cos(π/9)=cos(π/2 - 7π/18)=[π/2 - 7π/18 это 1 четверть, cos в ней положителен, знак при замене не меняется]=sin(7π/18). Будут вопросы - спрашивайте.
Синусоида лежит в пределах [1;-1] . sin 0 = sin П = sin 2П = 0 .Т. е. синусоида будет пересекаться с осью у в этих точках ( 0 , П , 2П , и т.д. ) Обозначаем точки , через которые проходит синусоида : sin П/6 = sin 5П/6 = 1/2 ( отмечаем 1/2 в этих точках ) sin П/3 = sin 2П/3 = / 2 ( отмечаем эти точки ) sin П/2 = 1 ( отмечаем эти точки ) sin 7П/6 = sin 11П/6 = - 1/2 ( отмечаем эти точки ) sin 4П/3 = sin 5П/3 = - / 2 ( отмечаем эти точки ) sin 3П/2 = - 1 ( отмечаем эти точки ) Так соединяем все точки , и у нас получилась одна волна синусоиды , а там как она повторяется , то след. волна будет такая же , как и предыдущая , а так как она неприрывна , то она не имеет области значения , т.е. не имеет начала и конца
Иррациональное число - это число, не являющееся рациональным, то есть такое, которое нельзя представить в виде отношения двух целых чисел.
Если Вы помните, рациональные числа были введены потому, что во множестве целых чисел не всегда можно выполнить деление. Например, существует целое число, которое является результатом деления 8 на 2, но не существует целого числа, которое является результатом деления 8 на 3. Поэтому были введены рациональные числа, то есть дроби вида p/q. Целые числа стали их подмножеством, когда q=1.
Для выполнимости деления рациональных чисел достаточно, но вот для извлечения корней - нет. Например, не существует рационального числа, которое было бы результатом извлечения квадратного корня из двух. (Это доказывается в Вашем учебнике, я уверен. Если не поняли, напишите, объясню.) Поэтому производят дальнейшее расширение системы чисел. К рациональным числам добавляют ещё и иррациональные, и все они вместе образуют множество действительных чисел.
Если не вдаваться в подробности, то рациональные числа можно отличить от иррациональных следующим образом. Рациональные числа, если их записать десятичной дробью, обязательно дадут конечную или бесконечную периодическую дробь. Это тоже легко доказать. Иррациональные же числа, записанные в виде десятичной дроби, оказываются представленными бесконечной НЕпериодической дробью.
Типичным примером иррационального числа является корень квадратный из двух. Пи - тоже иррациональное число, причем в определенном смысле более сложное, чем корень из двух, потому что Пи нельзя представить в виде корня из рационального числа. Но это уже немножко высший пилотаж
sin(90-a)=cosa
sin(180+a)=-sina
cos(270+a)=sina
cos(360+a)=cosa
Именно этими углами(90(π/2) , 180(π), 270(3π/2), 360(2π)) мы пользуемся в формулах приведения. И ещё одно, угол a∈(0;90).
Но чтобы их все не запоминать, нужно запомнить закон с которого можно вывести любую из них. Итак нужно запомнить в каких четвертях cos, sin, tg, ctg положительны или отрицательны. Всё это есть во вложении. Легче запомнить если кое что уяснить sin положителен когда положительна ось ординат(её часто обозначают y), cos - когда положительная ось абсцисс(x), tg и ctg (это sin/cos(cos/sin)) поэтому они положительны когда одновременно положительны или отрицательны cos и sin. С этим вроде бы разобрались.
Теперь ещё один закон:
при углах 90 и 270 функция изменяется на кофункцию.
при углах 180 и 360 функция не изменяется.
Изменение на кофункцию - замена косинуса синусом(и наоборот) и замена тангенса котангенсом(и наоборот).
Теперь попробуем решить ваш пример:
cos(π/9) нам нужно заменить на sin. Вспомним что при углах π/2 и 3π/2 функция изменяется на кофункцию, поэтому представим π/9 в виде суммы(разности) с одним из этих углов:
π/2=9π/18
π/9=2π/18=9π/18 - 7π/18
cos(π/9)=cos(π/2 - 7π/18)=[π/2 - 7π/18 это 1 четверть, cos в ней положителен, знак при замене не меняется]=sin(7π/18).
Будут вопросы - спрашивайте.