1) f(x)=7x-14, [0;4]
производная равна 7, 7≠0, , поэтому нет критических точек, и наибольшее и наименьшее свое значение функция принимает на концах отрезка.
f(0) = -14-наименьшее значение.
f(4) =14 наибольшее значение функции
2) f(x)= -0,2x + 0,4, [1;3]
аналогично 1) производная -0.2≠0, ищем значения функции на концах отрезка, т.е. f(1) =-0.2+0.4=0.2- наибольшее значение.
f(3) =-0.6+0.4=-0.2-наименьшее значение.
3) f(x)= 6/x, [1;6]
производная равна -6/х²≠0, не существует в точке 0, но эта точка не входит и в область определения. ищем значения функции на концах отрезка, т.е. f(1) =6/1=6- наибольшее значение.
f(6) =6/6=1- наименьшее значение.
4) f(x)= -5/x, [-5;-1]
Производная равна 5/х²≠0 не существует в точке 0, но эта точка не входит и в область определения. ищем значения функции на концах отрезка, т.е. f(-1) =-5/(-1)=5- наибольшее значение.
f(-5) =-5/(-5)=1- наименьшее значение.
1) f'(x)=(2sinx+3)' (4-5cosx) + (2sinx+3)(4-5cosx)' = 2cosx(4-5cosx) + 5sinx(2sinx + 3) = 8cosx-10cos²x+10sin²x+15snx = 15sinx + 8cosx - 10cos 2x
2) Находим производную и приравниваем ее к нулю.
y' = -3x²-6x+24
-3х²-6х+24=0 /(-3)
x²+2x-8=0
x₁=-4 --4+
x₂=2 - не принадлежит данному промежутку
ответ. -4 - точка минимума.
3) Находим координаты точки пересечения с осью ординат.
х = 0
у(0)=2 (0;2)
Находим производную.
y' = -2x-½
y'(0) = -½
Cоставляем уравнение касательной.
y=2-(x/2)