1.sin(x) = t
3*(1 - t^2) + t/2 = 2; t^2 - t/6 - 1/3 = 0; t = 1/12 +- 7/12; t1 = 2/3; t2 = -1/2;
а. sin(x) = 2/3; x1 = arcsin(2/3) + 2*pi*n и x2 = pi - arcsin(2/3) + 2*pi*n;
b. sin(x) = -1/2; x1 = -pi/6 + 2*pi*n и x2 = 7*pi/6 + 2*pi*n;
2. Второе не сложнее :)
3*(sin(2*x))^2 - 5*sin(x)*cos(x) - ((cos(2*x))^2 + (sin(2*x))^2) = -2;
3*(sin(2*x))^2 - (5/2)*2*sin(x)*cos(x) - 1 + 2= 0;
3*(sin(2*x))^2 - (5/2)*sin(2*x) +1 = 0;
sin(2*x) = t;
t^2 - (5/6)*t + 1/3 = 0; У этого уравнения нет действительных корней, поэтому и решений нет.
b[n]=b[1]q^(n-1)
a[n]=a[1]+(n-1)d
b[1]=a[2]
b[2]=a[14]
b[3]=a[8]
b[1]=a[1]+d
b[1]q=a[1]+13d
b[1]q^2=a[1]+7d
b[1]q-b[1]=12d
b[1]q^2-b[1]q=-6d
b[1](q-1)=12d
b[1](q-1)q=-6d
12d q=-6d
d=0 или q=-4/16=-1/2
1 случай если d=0 невозможен так как разность отлична от нуля
2 случай q=-1/2
b[1]=a[1]+d
b[1]q^2=a[1]+7d
b[1] (-1/2)=a[1]+13d
(a[1]+7d)/(a[1]+d)=1/4
4(a[1]+7d)=a[1]+d
4a[1]+28d=a[1]+d
3a[1]=-27d
a[1]=-9d
a[n]=a[1]+(n-1)d=-9d+(n-1)d=-10d+nd
-9d, -8d, -7d, ..., 0, d,2d,
b[1]=-8d=a[2]
b[2]=-8d*(-1/2)=4d=a[14]
b[3]=4d*(-1/2)=-2d=a[8]
b[4]=-2d*(-1/2)=d=-10d+11d=a[11]
b[5]=d*(-1/2)=-1/2d - не является членом данной арифмитической прогрессии
х<=-2