Общий вид решения уравнения sin x = a, где | a | ≤ 1, определяется формулой:
x = (- 1)^k · arcsin(a) + πk, k ∈ Z (целые числа),
x = +-arc sin (1/4) + πk ≈ +- 0,25268 + πk, k ∈ Z.Общий вид решения уравнения tg x = a определяется формулой:
x = arctg(a) + πk, k ∈ Z (целые числа).
х = 1,107149 + πk, k ∈ Z.
отмечаем все корни на координатной прямой
______-1________2__________3____________
находим знак функции на самом правом интервале
_______-1______2___________3_____-_______
расставим знаки на остальных интервалах, помня, что переходя через корень знак меняется
____+___-1__-__2_____+_____3_____-_______
вернемся к исходному неравенству, которое имело вид
решению удовлетворяют только интервалы
]-∞;-1]∨[2;3]