М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
крис855
крис855
19.08.2022 11:58 •  Алгебра

Пусть a меньше b и числа a и b-отрицательные . доказать , что a^4 больше b^4

👇
Ответ:
ToPGoP1
ToPGoP1
19.08.2022

a < b

Т.к. а < 0, b < 0.Чем больше значение отрицательного числа, тем оно меньше.

По модулю --- а > b.

I -a I > I -b I    (-3 > -4)

Степень положительная, значит, число будет положительным.

(-a)^{4} =a^{4} \\ \\ (-b)^{4} =b^{4}

Т.к. по модулю  а>b, то

a^{4} b^{4}

4,6(81 оценок)
Открыть все ответы
Ответ:
Anna256829
Anna256829
19.08.2022

Первая. Пусть а и b - две разные ненулевые данные цифры (двузначные числа не могут начинаться с 0). Тогда числа образованные с их пощью 10а+в (двузначное число в котором цифра а - количевство десятков, b - количевство единиц), 10a+a, 10b+a, 10b+b. Их сумма

10a+b+10a+a+10b+a+10b+b=22a+22b=22(a+b)=2*11 (a+b)

так как числа 2 и 11 взаимно простые, а сумма должна быть квадратом, то второй ненулевой множитель a+b должен делится на 22, что невозможно так как a и b - цифры, то их сумма не превышает 9+9=18

Таким образом сумма четырех различных двузначных чилес, записанных с двух заданных цифр не может быть квадратом натурального числа. Доказано

 

 

 

Вторая. х^2+5y^2+4xy+2y+1=0

x^2+4xy+4y^2+y^2+2y+1=0

(x+2y)^2+(y+1)^2=0

так как квадрат любого выражения неотрицателен, сумма двух неотрицательных неотрицательное и равно 0, только если каждое из слагаемых равно 0, то

 

x+2y=0

y+1=0

 

y=-1

x=-2y=-2*(-1)=2

ответ: (2;-1)

4,4(56 оценок)
Ответ:
belayazima
belayazima
19.08.2022

Первая. Пусть а и b - две разные ненулевые данные цифры (двузначные числа не могут начинаться с 0). Тогда числа образованные с их пощью 10а+в (двузначное число в котором цифра а - количевство десятков, b - количевство единиц), 10a+a, 10b+a, 10b+b. Их сумма

10a+b+10a+a+10b+a+10b+b=22a+22b=22(a+b)=2*11 (a+b)

так как числа 2 и 11 взаимно простые, а сумма должна быть квадратом, то второй ненулевой множитель a+b должен делится на 22, что невозможно так как a и b - цифры, то их сумма не превышает 9+9=18

Таким образом сумма четырех различных двузначных чилес, записанных с двух заданных цифр не может быть квадратом натурального числа. Доказано

 

 

 

Вторая. х^2+5y^2+4xy+2y+1=0

x^2+4xy+4y^2+y^2+2y+1=0

(x+2y)^2+(y+1)^2=0

так как квадрат любого выражения неотрицателен, сумма двух неотрицательных неотрицательное и равно 0, только если каждое из слагаемых равно 0, то

 

x+2y=0

y+1=0

 

y=-1

x=-2y=-2*(-1)=2

ответ: (2;-1)

4,5(6 оценок)
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ