1) (-3; -7)
2) (-5; 6)
3) (-8; 2)
4) (-1; 10)
Объяснение:
Решаем по обратной теореме
Виета.
1.
{х+у=-10
{ху=21
Перебираем варианты:
3×7=21 не подходит, так как
3+7=/=-10
1×21=21 не подходит, так как
1+21=/=-10
(-3)×(-7)=21 подходит, так как
(-3)+(-7)=-10
ответ: (-3; 7)
2.
{ху=-30
{х+у=1
Перебираем варианты:
2×(-15)=-30 не подходит, так как
2-15=/=1
(-2)×15=-30 не подходит, так как
-2+15=/=1
(-5)×6=-30 подходит, так как
(-5)+6=1
ответ: (-5; 6)
3.
{х+у=-6
{ху=-16
Перебираем варианты:
4×(-4)=-16 не подходит, так как
4-4=/=-16
(-2)×8=-16 не подходит, так как
-2+8=/=-6
2×(-8)=-16 подходит, так как
2-8=-6
ответ: (2; -8)
4.
{х+у=9
{ху=-10
Перебираем варианты:
(-5)×2=-10 не подходит, так как
-5+2=/=9
(-10)×1=-10 не подходит, так как
-10+1=/=9
10×(-1)=-10 подходит, так как
-1+10=9
ответ: (-1; 10)
y=Π/3-x
sin x+cos(Π/3-x)=1
sin x+cos Π/3*cos x+sin Π/3*sin x=1
sin x*(1+√3/2)+cos x*1/2=1
Переходим к половинным аргументам и умножаем все на 2.
2sin(x/2)*cos(x/2)*(2+√3) + cos^2(x/2) - sin^2(x/2) = 2cos^2(x/2)+2sin^2(x/2)
Переносимости все в одну сторону
3sin^2(x/2) - (4+2√3)*sin(x/2)*cos(x/2) + cos^2(x/2) = 0
Делим все на cos^2(x/2)
3tg^2(x/2)-(4+2√3)*tg(x/2)+1=0
Замена t=tg(x/2)
3t^2-(4+2√3)*t+1=0
Получили обычное квадратное уравнение
D/4=(2+√3)^2-3*1=4+4√3+3-3= 4+4√3
t1=tg(x/2)=[2+√3-√(4+4√3)]/3
t2=tg(x/2)=[2+√3+√(4+4√3)]/3
Соответственно
x1=2*arctg(t1)+Π*n; y1=Π/3-x1
x2=2*arctg(t2)+Π*n; y2=Π/3-x2