1)Решение системы уравнений х=3
у=2
2)Система имеет бесконечное множество решений.
3)Система уравнений не имеет решений.
Объяснение:
Решите графически систему уравнений:
1) -x+3y=3
x-y=1
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
-x+3y=3 x-y=1
3у=3+х -у=1-х
у=(3+х)/3 у=х-1
Таблицы:
х -3 0 3 х -1 0 1
у 0 1 2 у -2 -1 0
Согласно графика, координаты точки пересечения графиков данных уравнений (3; 2)
Решение системы уравнений х=3
у=2
2)x+y=0
3x+3y=0
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
x+y=0 3x+3y=0
у= -х 3у= -3х
у= -3х/3
у= -х
Таблицы:
х -1 0 1 х -1 0 1
у 1 0 -1 у 1 0 -1
Графики сливаются, система имеет бесконечное множество решений.
3)x-y=2
2x+5=2y
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
x-y=2 2x+5=2y
-у=2-х -2у= -2х-5
у=х-2 2у=2х+5
у=(2х+5)/2
Таблицы:
х -1 0 1 х -1 0 1
у -3 -2 -1 у 1,5 2,5 3,5
Прямые параллельны, система уравнений не имеет решений.
1/3+2/6 = (2+2)/6=4/6=2/3
как мы это сделали?
надо приводить дроби к общему знаменателю при сложении и вычитании. 3 и 6 общий наименьший 6 . 3 не хватает 2 (6:3=2) домножаем на 2 получаем 2/6.
при умножении умножаем числитель , после знаменатель
1/3*2/6 = 1*3/2*6 =3/12 = 1/4 =0.25
при делении мы переворачиваем 2 дробь и умножаем.
1/3 : 2/6 = 1/3 * 6/2 = 1*6/3*2= 6/6 =1