М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kurokislip
kurokislip
04.05.2023 20:34 •  Алгебра

Втреугольнике авс угол с равен 90 градусов ас=вс=14см. две стороны квадрата сдеф лежат на катетах треугольника авс а вершина е принадлежит гипотенузе ав. найдите периметр квадрата сдеф?

👇
Ответ:
ира8800
ира8800
04.05.2023
14*4=56 т.к у квадрата все стороны равны в данном примере стороны у нас ас и бс которые равны 14см
4,7(90 оценок)
Открыть все ответы
Ответ:
YaShKa111111
YaShKa111111
04.05.2023
4((x+1)(x+6))*((x+2)(x+3)) = -3x^2
4(x^2 + 7x + 6)*(x^2 + 5x + 6) = -3x^2
Замена x^2 + 6x + 6 = t
4(t + x)(t - x) = -3x^2
4(t^2 - x^2) = -3x^2
4t^2 - 4x^2 + 3x^2 = 0
4t^2 - x^2 = 0
(2t - x)(2t + x) = 0
Обратная замена
(2x^2 + 12x + 12 - x)(2x^2 + 12x + 12 + x) = 0
(2x^2 + 11x + 12)(2x^2 + 13x + 12) = 0
Разложили на 2 квадратных. Решаем их отдельно.

1) 2x^2 + 11x + 12 = 0
D = 11^2 - 4*2*12 = 121 - 96 = 25 = 5^2
x1 = (-11 - 5)/4 = -16/4 = -4
x2 = (-11 + 5)/4 = -6/4 = -1,5

2) 2x^2 + 13x + 12 = 0
D = 13^2 - 4*2*12 = 169 - 96 = 73
x3 = (-13 - √73)/4
x4 = (-13 + √73)/4
4,5(24 оценок)
Ответ:
AlexCairon5
AlexCairon5
04.05.2023
Доказательство проведем индукцией по n.
1) 17ⁿ - 1 кратно 16. При n = 1 кратность подтверждается: 17 - 1 = 16. Пусть кратность 16-ти сохраняется при произвольном n. Докажем, что она подтверждается и при n + 1. 17ⁿ⁺¹ - 1 = 17*17ⁿ + 1. Составим разность: 17ⁿ⁺¹ - 1 - (17ⁿ - 1) = 17ⁿ⁺¹ - 1 - 17ⁿ + 1 = 17*17ⁿ - 17ⁿ = 17ⁿ(17 - 1) = 16*17ⁿ. Получили, что разность 17ⁿ⁺¹ - 1 - (17ⁿ - 1) кратна 16. Т.к. слагаемое 17ⁿ - 1 также кратно 16 по предположению индукции, то и слагаемое 17ⁿ⁺¹ - 1 кратно 16, следовательно кратность доказана.

2) 23²ⁿ⁺¹ + 1 кратно 24. При n = 1 кратность подтверждается: 23³ + 1 = 12167 + 1 = 12168 = 24*507. Полагая, что имеет место кратность 23²ⁿ⁺¹ + 1 двадцати четырем, покажем, что и при n + 1 кратность подтверждается. 23²⁽ⁿ⁺¹⁾⁺¹ + 1 = 23²ⁿ⁺³ + 1. Составляем разность 23²ⁿ⁺³ + 1 - (23²ⁿ⁺¹ + 1) = 23²ⁿ⁺³ + 1 - 23²ⁿ⁺¹ - 1 = 23²ⁿ⁺¹*23² - 23²ⁿ⁺¹ = 23²ⁿ⁺¹(23² - 1) = 23²ⁿ⁺¹(23 - 1)(23 + 1)=22*24*23²ⁿ⁺¹. Видим, что эта разность кратна 24. Т. к. слагаемое 23²ⁿ⁺¹ + 1 кратно 24 по предположению индукции, то и 23²ⁿ⁺³ + 1 кратно 24, тем самым кратность доказана.

3) 13²ⁿ⁺¹ + 1 кратно 14. Действуя как в предыдущем пункте, получаем: при n = 1, 13³ + 1 = 2197 + 1 = 2198 = 14*157. Полагаем, что 13²ⁿ⁺¹ + 1 кратно 14 и доказываем кратность четырнадцати при n + 1. 13²⁽ⁿ⁺¹⁾⁺¹ + 1 = 13²ⁿ⁺³ + 1. Составляем разность 13²ⁿ⁺³ + 1 - (13²ⁿ⁺¹ + 1) = 13²ⁿ⁺³ - 13²ⁿ⁺¹ = 13²*13²ⁿ⁺¹ - 13²ⁿ⁺¹ = 13²ⁿ⁺¹(13² - 1) = 13²ⁿ⁺¹(13 - 1)(13 + 1) = 12*14*13²ⁿ⁺¹. Разность кратна 14, т. к. по предположению 13²ⁿ⁺¹ + 1 кратно 14, то и 13²ⁿ⁺³ + 1 кратно 14. Кратность доказана.
4,4(78 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ