М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sab2021
sab2021
18.01.2023 09:58 •  Алгебра

Найдите корень уравнения (5x-3)^2 -25x^2=21^2 - в квадрате ​

👇
Ответ:
lenamarydina
lenamarydina
18.01.2023

(Если после Х стоит большая 2 - это квадрат)

25х2 - 30х + 9 - 25х2 = 21

-30х + 9 = 21

-30х = 21-9

-30х = 12

х = -0,4 или

 - \frac{2}{5}

4,5(49 оценок)
Открыть все ответы
Ответ:
Амир986
Амир986
18.01.2023

Нужно сравнить длины сторон треугольников

Для этого находим их по формуле расстояния между двумя точками

d=√((x2-x1)^2+(y2-y1)^2)

a)

AB=√((2+2)^2+(-1+1)^2)=√(16)=4

BC=√((-2-2)^2+(1+1)^2)=√(16+4)=√20

CA=√((-2+2)^2+(-1-1)^2)=√(4)=2

Стороны не равны, но сторона BC больше остальных, поэтому проверим выполняется ли на них теорема пифагора

(√20)^2=2^2+4^2

20=4+16

20=20

Теорема Пифагора выполняется, значит треугольник прямоугольный.

б)

AB=√((2+2)^2+(-2+2)^2)=√(16)=4

BC=√((0-2)^2+(1+2)^2)=√(4+9)=√13

CA=√((-2-0)^2+(-2-1)^2)=√(4+9)=√13

т.к. равны 2 стороны, то треугольник равнобедренный.

4,7(42 оценок)
Ответ:
4755Kristina501
4755Kristina501
18.01.2023
Уравнение любой касательной к любому графику находится по формуле:
f'(x_{0})*(x-x_{0})+f(x_{0})
Где f'(x_{0}) производная функции в данной точке. А x_{0} точка касания по иксу.

1)
Поначалу у функции y=x^{0,2} мы должны найти производную общего типа этой функции.
Это степенная функция, а производная любой степенной функции находится следующей формулой:
f'(x)=nx^{n-1} - где n это степень.
В нашем случае:
f'(x)=0,2x^{0,2-1}= 0,2x^{-0,8}
Так, нашли производную общего случая.

Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
y=0,2x_{0}^{-0,8}*(x-x_{0})+x_{0}^{0,2}

2) 
Опять же, найдем производную 
y=\frac{1}{3}^{(x-2)-1}
f'(x)=(x-3)x^{(x-4)}
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
y= (x_{0}-3)x_{0}^{(x_{0}-4)}*(x-x_{0})+(1/3)^{(x_{0}-3)}

То есть, берешь любой икс, и вставляешь в выражение касательной вместо x_{0} и получаешь уравнение касательной.

Это и есть окончательные ответы. 
Если что-то не правильно, то это значит что вы не правильно написали условие.
4,6(66 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ