М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lizabezludnaya
lizabezludnaya
18.01.2021 07:01 •  Алгебра

Найдите уравнение параболы, которая симметрична параболе y=4x^2-8x+3, относительно прямой y=2. полное решение .

👇
Ответ:
ArtemDigue
ArtemDigue
18.01.2021
Y=4x²-8x+3=4(x²-2x+1)-1=4(x-1)²-1
Вершина параболы в точке (1;-1).Точка симметричная ей относительно прямой у=2 будет (1;5).Ветви направлены вниз⇒
у=-4(х-1)²+5=-4х²+8х+1симметрична относительно прямой у=2 у=4х²-8х+3
4,8(88 оценок)
Открыть все ответы
Ответ:
Mv0856
Mv0856
18.01.2021
Два натуральных числа (n)  и  (2017-n); очевидно, что это
не двузначные числа: 99+99 < 2017
   ... и не трехзначные: 2*999 < 2017
2017:2 = 1008.5 (одно из них точно больше 1000)
если обозначить меньшее из этих чисел (n), то большее можно
записать как (10*n + c), где с∈{0;1;2;3;4;5;6;7;8;9} -это цифра
например, (23) и (234 = 10*23 + 4); получим:
2017 - n = 10*n + c
с = 2017 - 11n
и осталось решить 10 уравнений:
0 = 2017 - 11n ---> n ≠ 2017:11 ∉ N
1 = 2017 - 11n ---> n ≠ 2016:11 ∉ N
2 = 2017 - 11n ---> n ≠ 2015:11 ∉ N
3 = 2017 - 11n ---> n ≠ 2014:11 ∉ N
4 = 2017 - 11n ---> n = 2013:11 = 183
5 = 2017 - 11n ---> n ≠ 2012:11 ∉ N
6 = 2017 - 11n ---> n ≠ 2011:11 ∉ N
7 = 2017 - 11n ---> n ≠ 2010:11 ∉ N
8 = 2017 - 11n ---> n ≠ 2009:11 ∉ N
9 = 2017 - 11n ---> n ≠ 2008:11 ∉ N
т.е. таких чисел только два... 183 и 1834
4,5(19 оценок)
Ответ:
chikist2
chikist2
18.01.2021
Два натуральных числа (n)  и  (2017-n); очевидно, что это
не двузначные числа: 99+99 < 2017
   ... и не трехзначные: 2*999 < 2017
2017:2 = 1008.5 (одно из них точно больше 1000)
если обозначить меньшее из этих чисел (n), то большее можно
записать как (10*n + c), где с∈{0;1;2;3;4;5;6;7;8;9} -это цифра
например, (23) и (234 = 10*23 + 4); получим:
2017 - n = 10*n + c
с = 2017 - 11n
и осталось решить 10 уравнений:
0 = 2017 - 11n ---> n ≠ 2017:11 ∉ N
1 = 2017 - 11n ---> n ≠ 2016:11 ∉ N
2 = 2017 - 11n ---> n ≠ 2015:11 ∉ N
3 = 2017 - 11n ---> n ≠ 2014:11 ∉ N
4 = 2017 - 11n ---> n = 2013:11 = 183
5 = 2017 - 11n ---> n ≠ 2012:11 ∉ N
6 = 2017 - 11n ---> n ≠ 2011:11 ∉ N
7 = 2017 - 11n ---> n ≠ 2010:11 ∉ N
8 = 2017 - 11n ---> n ≠ 2009:11 ∉ N
9 = 2017 - 11n ---> n ≠ 2008:11 ∉ N
т.е. таких чисел только два... 183 и 1834
4,4(52 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ