1.1) arcsin(-1) + arccos0 = π + (π/2) = 3π/2
Пусть arcsin(-1) = α, тогда cosα = -1, значит α = π
Пусть arccos0 = β, тогда cosβ = 0, значит β = (π/2)
2) arctg + arctg(- √3) = π/4 + (-π/3) = 1
2. x=±arccosa+2πk,k∈Z .
3.tg(2x) = 2·tg(x)/(1 - tg²(x))
4.cos 5x-cos 7x=0
-2sin 6x*sin (-x)=0(-2 на синус полусуммы углов умножить на синус полуразности углов)
sin 6x=0 или sin x=0
6x=pn, x=pn/6 или x=pn
x=pn/6
5. sin (3x) =1
3х= π/2+2πn
x= π/6 + (2πn)/3
7. sin(3x)-sin(x)=0
2*sin((3x-x)/2)*cos((3x+x)/2)=0
2sin(x)*cos(2x)=0
1) sin(x)=0
x=π*n
2) cos(2x)=0
2x=(pi/2)+pi*n
x=(pi/4)+pi*n/2
(-1; 2/3)
Объяснение:
Поскольку отрицательных корней на поле действительных чисел не существует и на ноль делить нельзя, то необходимо записать оба знаменателя в виде неравенств со "строгим" знаком ">" и решить их:
-3x^2-7x+6>0 (корнем можно пренебречь, он ни на что не влияет);
D=\/(-7)^2-4*(-3)*6=\/121=11;
x(1)=(7-11)/-6=2/3;
x(2)=(7+11)/-6=-3;
x є (-3; 2/3) - при числах, находящихся в этом промежутке, значение уравнение будет строго больше нуля;
x+1>0;
x>-1;
x є (-1; +бесконечности);
Пересечением промежутков (-3; 2/3) и (-1; +беск.) будет промежуток (-1; 2/3);
Выходит, что промежуток х є (-1; 2/3) будет областью определения заданной функции.
f'(X)=16(x^-2)=16/x^2
f(x0)=16/4=4