М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
zhirola2013
zhirola2013
22.05.2021 17:55 •  Алгебра

1) площадь прямоугольника равна 140. найдите его большую сторону, если она на 4 больше меньшей стороны? 2) один из смежных углов в 4 раза меньше другого. найдите больший угол? 3) цена конфет была 700 руб. после понижение цена стала 141 руб. на сколько % была пони жена цена?

👇
Ответ:
galeevaazaliyaqwert
galeevaazaliyaqwert
22.05.2021
1.Пусть x меньшая сторона,тогда (х+4) большая
известно что s=140
х(х+4)=140
х^2+4х-140=0
D=4^2-4*1*(-140)=16+560+576
x1=-4+24/2=10 
x2=-4-24/2=-14 -не удовлетворяет условие 
меньшая сторона=10
большая 10+4=14
4,5(36 оценок)
Открыть все ответы
Ответ:
superschool1
superschool1
22.05.2021
Раскладываем на множители sin+sin3x+sin5x
sinx+sin3x+sin5x=sinx+sin(x+2x)+sin(3x+2x)=sinx+sinx*cos2x+cosx*sin2x+sin3x*cos2x+cos3x*sin2x=sinx+sinx*cos2x+2sinx*cos^2x+sin(2x+x)*cos2x+cos(x+2x)*sin2x=sinx+sinx*cos2x+2sinx*cos^2x+(2sinx*cos^2x+cos2x*sinx)*cos2x+(cosx*cos2x-sinx*sin2x)*2sinx*cosx=sinx(1+cos2x+2cos^2x+(2cos^2x+cos2x)*cos2x+2cosx*(cosx*cos2x-sinx*sin2x))=sinx(1+cos2x+2cos^2x+cos^2(2x)+2cos^2x*cos2x+2cos^2x*cos2x-4sin^2x*cos^2x)=sinx(1+cos2x+2cos^2x+cos^2(2x)+4cos^2x*cos2x-sin^2(2x))=sinx(2cos^2(2x)+cos2x+2cos^2x+4cos^2x*cos2x)=sinx(2cos^2(2x)+cos2x+1+cos2x+4cos^2x*cos2x)=sinx(2cos^2(2x)+2cos(2x)+2(1+cos2x)*cos2x+1)=sinx(2cos^2(2x)+2cos2x+2cos2x+2cos^2(2x)+1)=sinx(4cos^2(2x)+4cos(2x)+1)=sinx*(2cos(2x)+1)^2

теперь раскладываем cosx+cos3x+cos5x
cosx+cos3x+cos5x=cosx+cos(2x+x)+cos(2x+3x)=cosx+cos2x*cosx-sin2x*sinx+cos2x*cos3x-sin2x*sin3x=cosx+cos2x*cosx-2sin^2x*cosx+cos2x*cos(x+2x)-2sinx*cosx*sin(x+2x)=cosx+cos2x*cosx-2sin^2x*cosx+cos2x*(cosx*cos2x-2sin^2x*cosx)-2sinx*cosx*sin(x+2x)=cosx(1+cos2x-2sin^2x+cos^2(2x)-2sin^2x*cos2x-2sinx*(sinx*cos2x+cosx*sin2x))=cosx(2cos2x+cos^2(2x)-2sin^2x*cos2x-2sin^2x*cos2x-4sin^2x*cos^2x)=cosx(2cos2x+cos^2(2x)-4sin^2x*cos2x-4sin^2x*cos^2x)=cosx(2cos2x+cos^2(2x)-2(1-cos2x)*cos2x-sin^2(2x))=cosx(2cos2x+cos^2(2x)-sin^2(2x)-2cos2x+2cos^2(2x))=cosx(2cos^2(2x)-1+2cos2x-2cos2x+2cos^2(2x))=cosx(4cos^2(2x)-1)=cosx(2cos2x-1)(2cos2x+1)
подставляем в уравнение:
(sinx*(2cos(2x)+1)^2)/(cosx*(2cos2x-1)(2cos2x+1))+2tgx=0
tgx*(2cos(2x)+1)/(2cos2x-1)+2tgx=0
tgx*((2cos(2x)+1)/(2cos2x-1)+2)=0
tgx=0
x1=pi*n
(2cos2x+1)/(2cos2x-1)+2=0
(2cos2x+1+4cos2x-2)/(2cos2x-1)=0
(6cos2x-1)/(2cos2x-1)=0
6cos2x-1=0
cos2x=1/6
2x=arccos(1/6)+2pi*n
x2=0,5arccos(1/6)+pi*n
2x=-arccos(1/6)+2pi*n
x3=-0,5arccos(1/6)+pi*n
ответ: x1=pi*n; x2=0,5arccos(1/6)+pi*n; x3=-0,5arccos(1/6)+pi*n
4,5(27 оценок)
Ответ:
aaaaaalina1yuin
aaaaaalina1yuin
22.05.2021
Разложим на множители:
n³ + 3n² + 2n = n(n² + 3n + 2)
n² + 3n + 2 = 0
n₁ + n₂ = -3
n₁n₂ = 2
n₁ = -1; n₂ = -2
n³ + 3n² + 2n = n(n + 1)(n + 2) 
Как видно, выражение представлено в виде трёх последовательных натуральных чисел.
Произведение трёх последовательных натуральных чисел обязательно делится на 3 (т.к. один из множителей будет делиться нацело на 3).
Помимо этого, среди двух последовательных натуральных чисел одно обязательно будет делиться на 2.
Отсюда делаем вывод, что n(n + 1)(n + 2) делиться и на 2, и на 3, а значит, и на 6 при любом натуральном n.
4,8(19 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ