Лексель Котов – архимагос исследовательского флота Котова
Таркис Блейлок – фабрикатус-локум, магос региона Кебрения
Виталий Тихон – звёздный картограф орбитальных галерей Кватрии
Линья Тихон – звёздный картограф, дочь Виталия Тихона
Азурамаджелли – магос астронавигации
Криптаэстрекс – магос логистики
Тарентек – фабрикатус ковчега
Хиримау Дахан – секутор/сюзерен гильдии
Хирона Манубия – магос кузни “Электрус”
Тота Мю-32 – надсмотрщик Механикус
Авреем Локк – крепостной
Расселас Х-42 – аркофлагеллант
Ванн Койн – крепостной
Юлий Хоук – крепостной
Исмаил де Рёвен – сервитор
Галатея – запрещённый машинный интеллект
Экснихлио
Веттий Телок – архимагос исследовательского флота Телока
“Ренард”
Робаут Сюркуф – капитан
Эмиль Надер – первый
Адара Сиаваш – наёмный стрелок
Иланна Павелька – техножрец
Каирн Силквуд – технопровидец
<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение:
б)не имеет смысла
в)не имеет смысла
г)имеет смысл
Это задание связано с промежутками.Например,у sin и cos [-1;1].
Мы тоже делали это домашнее задание.