1. < var > x^3y^34z^22y=8x^3y^4x^2 < /var ><var>x3y34z22y=8x3y4x2</var>
2. < var > -2x^60,5x^2y^3=-x^8y^3 < /var ><var>−2x60,5x2y3=−x8y3</var>
3. < var > (-5z^2y^3)^3=-125z^6y^9 < /var ><var>(−5z2y3)3=−125z6y9</var>
4. < var > -0,03ab^3=-0,03*(-4)*(-2)^3=0.96 < /var ><var>−0,03ab3=−0,03∗(−4)∗(−2)3=0.96</var>
5. < var > (18a^3b^2c)(\frac{1}{6}ab^3c^2)(-\frac{1}{3}a^2bc^3)=-a^6b^6c^6 < /var ><var>(18a3b2c)(61ab3c2)(−31a2bc3)=−a6b6c6</var>
Объяснение:
Рад
2sinxcosx=-√3sinx
2sinxcosx+√3sinx=0
sinx·(2cosx+√3)=0
sinx=0 или 2cosx+√3=0
x=πk, k∈ Z cosx=-√3/2
x=±arccos(-√3/2)+2πn, n∈Z
x=±(5π/6)+2πn, n∈Z
Б) [2π;7π/2]
Указанному промежутку принадлежат корни:
х₁=2π; х₂=(5π/6)+2π=17π/6
х₃=3π х₄=-(5π/6)+4π=19π/6