По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*),
. И правда:
(*) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**),
. И правда:
(**) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
Две цифры 1 и 2 - "заняты". Остаётся ровно 8 цифр (10-2=8).
Начинаем составлять трёхзначные цифры.
Пусть место сотен займёт цифра 1 (один вариант), место десятков - цифра 2 (один вариант), тогда на место единиц можно будет поставить любую из восьми оставшихся цифр (8 вариант).
Перемножаем полученные варианты получаем 1*1*8 = 8 таких чисел
Учитываем, что 1 и 2 можно поменять местами и получаем 2*8=16 таких чисел.
Далее, аналогично:
Пусть место сотен займёт цифра 1 (один вариант), место единиц - цифра 2 (один вариант), тогда на место десятков можно будет поставить любую из восьми оставшихся цифр (8 вариант).
Перемножаем полученные варианты получаем 1*8*1= 8 таких чисел
Учитываем, что 1 и 2 можно поменять местами и получаем 2*8=16 таких чисел.
Далее,
Пусть место десятков займёт цифра 1 (один вариант), место единиц - цифра 2 (один вариант), тогда на место сотен можно будет поставить любую из семи оставшихся цифр - ноль нельзя ставить на место сотен (7 вариант).
Перемножаем полученные варианты получаем 7*1*1 = 7 таких чисел
Учитываем, что 1 и 2 можно поменять местами и получаем 2*7=14 таких чисел.
Теперь осталось сложить все полученные результаты:
16+16+14=46 чисел
ответ: 46 чисел