1)-9.8*x^6y^4
20-27m^12n^39
В решении.
Объяснение:
1. Найди множество значений функции y= (х – 3)(х + 7) + 11.
Преобразовать уравнение:
у = х² + 7х - 3х - 21 +11
у = х² + 4х - 10
Найти координаты вершины параболы:
х₀ = -b/2a
x₀ = -4/2 = -2;
y₀ = (-2)² + 4*(-2) - 10 = 4 - 8 - 10 = -14.
Координаты вершины параболы (-2; -14).
Множество значений функции Е(у) = у∈[-14; +∞).
У может быть любым, только больше либо равен -14.
2. Найди значения х для квадратичной функции у = х² - 2x - 10,
если у = 25.
Подставить значение у в уравнение и вычислить значение х:
25 = х² - 2х - 10
-х² + 2х + 10 + 25 = 0
-х² + 2х + 35 = 0/-1
х² - 2х - 35 = 0, квадратное уравнение, ищем корни:
D=b²-4ac = 4 + 140 = 144 √D= 12
х₁=(-b-√D)/2a
х₁=(2-12)/2
х₁= -10/2
х₁= -5;
х₂=(-b+√D)/2a
х₂=(2+12)/2
х₂=14/2
х₂=7.
При х = -5; х = 7 у = 25.
3. Найди координаты точек пересечения графика функции
y=x(4х + 1) + (х + 2)(х – 2) с осью Ох.
Преобразовать уравнение:
у = 4х² + х + х² - 4
у = 5х² + х - 4;
Любой график пересекает ось Ох при у=0, приравнять уравнение к нулю и решить как квадратное уравнение:
5х² + х - 4 = 0
D=b²-4ac = 1 + 80 = 81 √D=9
х₁=(-b-√D)/2a
х₁=(-1-9)/10
х₁= -10/10
х₁= -1;
х₂=(-b+√D)/2a
х₂=(-1+9)/10
х₂=8/10
х₂= 0,8.
Координаты точек пересечения параболой оси Ох (-1; 0); (0,8; 0).
4. Найди значения аргумента для функции y = 2(х – 5)², если у = 8.
Преобразовать уравнение:
у = 2(х - 5)²
у = 2(х² - 10х + 25)
у = 2х² - 20х + 50
Подставить значение у в уравнение и вычислить значение х:
8 = 2х² - 20х + 50
Разделить уравнение на 2 для упрощения:
4 = х² - 10х + 25
-х² + 10х - 25 + 4 = 0
-х² + 10х - 21 = 0/-1
х² - 10х + 21 = 0, квадратное уравнение, ищем корни:
D=b²-4ac = 100 - 84 = 16 √D= 4
х₁=(-b-√D)/2a
х₁=(10-4)/2
х₁=6/2
х₁=3;
х₂=(-b+√D)/2a
х₂=(10+4)/2
х₂=14/2
х₂=7.
При х = 3; х = 7 у = 8.
Вычислите:
1) sin 105° * sin 75°; 2) 4sin 37,5° * sin 7,5°; 3) 8sin 22,5° * cos 7,5°
1 ) sin 105° * sin 75° = (1/2)* (cos(105° -75°) - cos(105°+75°) )=
(1/2)* (cos30°-cos180°) =(1/2)* ( (√3)/ 2 - (-1) ) = (1/2)*((√3) / 2+ 1 ) = (√3+2)/4
- - - - - - -
2 ) 4sin 37,5° * sin 7,5° =2*(cos(37,5° - 7,5°) - cos(37,5° +7,5°) ) =
2*(cos30° - cos45°) =2*( (√3)/2 -(√2) /2) = √3 - √2 .
- - - - - - -
3 ) 8sin 22,5° * cos 7,5° = 4*( sin(22,5°+7,5°) +sin(22,5°-7,5°) ) =
4*( sin30° + sin15° ) = 4*( 1/2 + sin(60 - 45°) ) =
4*( 1/2 + sin60°*cos45°- cos60°*sin45° ) = || cos45°=sin45 =√2 / 2 ||
= 4*( 1/2 + √2 (√3 - 1) / 4 ) = 2 + √6 - √2 .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
P.S. sin15° =sin(45° -30°) = sin45°*cos30° - cos45°* sin30° =
(√2 / 2)*(√3 / 2 -1 / 2) = (√6 - √2) / 4 .
sin15° =√( (1 -cos30°) / 2 ) =√( (1 -√3 /2) / 2 ) =√( (2-√3 ) / 4 ) =
√( (4-2√3 ) / 8 ) =√( (3-2√3+1) / 8 ) =√( (√3 - 1 )² / 8 ) = (√3 - 1) /2√2 =
√2(√3 - 1) /4 = (√6 - √2) / 4 .
а) -7х^5 y^3 * 1,4xy =-9,8х^6y^4
б) (-3m^4 n^13)^3=-27m^12n^39