1) Разложить на множители:
3a+3a²-b-ab=(3a+3a²)+(-b-ab)=3a(1+a)+(-(b+ab))=3a(1+a)-(b+ab)=3a(1+a)-b(1+a)=(1+a)(3a-b)
2) Преобразуйте произведения (n²-n-1)(n²-n+1) в многочлен стандартного вида:
Для того чтобы данное выражение преобразовать в многочлен, необходимо перемножить обе скобки
(n²-n-1)(n²-n+1)=n⁴-n³+n²-n³+n²-n-n²+n-1
далее группируем (или приводим подобные члены)
n⁴+(-n³-n³)+(n²+n²-n²)+(-n+n)-1=n⁴-2n³+n²-1
3) Известно,что 2(a+1)(b+1)=(a+b)(a+b+2).Найдите a²+b²
За основу берём выражение
2(a+1)(b+1)=(a+b)(a+b+2)
поочерёдно раскрываем скобки
2(аb+a+b+1)=a²+ab+2a+ab+b²+2b
2ab+2a+2b+2=a²+ab+2a+ab+b²+2b
группируем правую половину уравнения
2ab+2a+2b+2=a²+(ab+ab)+2a+b²+2b
2ab+2a+2b+2=a²+2ab+2a+b²+2b
a²+b²=2ab+2a+2b+2-(2ab+2a+2b)
a²+b²=2ab+2a+2b+2-2ab-2a-2b
снова группируем
a²+b²=(2ab-2ab)+(2a-2a)+(2b-2b)+2
a²+b²=2
D=9² -4*1*(-3)=81+12=93
2) -x²+6x-11=0
D=6² -4*(-1)*(-11)=36-44= -8
3) -0.5x² +6x-7=0
D=6² - 4*(-0.5)*(-7)=36-14=22
4) -5x² +2x-2.5=0
D=2² -4*(-5)*(-2.5)=4 - 50= -46
5) x² -14x+49 =0
D=(-14)² -4*1*49=196 -196=0
6) 0.64x²+1.6x+1=0
D=1.6² - 4*0.64*1= 2.56-2.56=0