Это уравнение квадратичной функции, графиком которой является парабола, перепишу в стандартном виде y=-4x² - 8x+5, так как а=-4<0 (вообще коэффициенты соответственно равны а=-4, b=-8, c=5, то ветви вниз, и значит действительно у параболы будет наибольшее значение (а вот наименьшего не будет, так как веточки параболы уйдут в бесконечность), координата х вершины параболы определяется по формуле х0=-b/2a=-(-8)/(2*(-4)=8/(-8)=-1, тогда у0=у(х0)=у(-1)=-4*(-1)² -8*(-1)+5=-4+8+5=9 это и есть наибольшее значение функции, ответ номер 1
Решение такой задачи легко увидеть- составив график платежей. итак S=1 200 000 руб.= 1 200 тыс. руб проценты банка 10% . К/т на который будет расти долг к=1,1 ежегодный платеж 320 000 руб= 320 тыс.руб. кредит выплаты остаток 0 год 1 200 0 1 200 1 год 1 200*1,1=1 320 320 1 000 2 год 1 000*1,1=1 100 320 780 3 год 780*1,1=858 320 538 4 год 538*1,1=591,8 320 271,8 5 год 271,8*1,1=298,98 298,98 0
Значит при максимальной выплате в 320 тыс кредит можно взять на 5 лет
2*3^n≤2^n+4^n
преобразуем
2 ≤ (2^n+4^n ) / 3^n = (2/3)^n +(4/ 3)^n
в правой части оба слагаемые положительные числа
первое слагаемое (2/3)^n - дробь -всегда меньше 1
второе слагаемое (4/3)^n - дробь -всегда больше 1
достаточное условие доказательства , чтобы одно из слагаемых было БОЛЬШЕ 2
рассмотрим n=1,2,3
n=1
(2/3)^1 +(4/ 3)^1 = 2/3+4/3=6/3 =2 <выполняется равенство 4/3 < 2
n=2
(2/3)^2 +(4/ 3)^2 = 4/9+16/9=20/9 =2+2/9 >2 <выполняется НЕравенство 16/9 < 2
n=3
(2/3)^3 +(4/ 3)^3 = 8/27+64/27=72/27 =2+18/27 <выполняется НЕравенство 64/27 > 2
второе слагаемое (4/3)^n > 2 , для всех 3 ≤ n
следовательно, для любого натурального n справедливо заданное неравенство
ДОКАЗАНО