М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
egorovnanastya0
egorovnanastya0
11.05.2023 18:54 •  Алгебра

Представьте многочлен в виде произведения 6) 6by+15bx-4ay+10ax 7)5x^2-5ax-7a+7x 8) 4x^2-4xz-3x+3z 9)5ax-6bx-5ay+6by 10)2m^2-mn+2mx-nx

👇
Ответ:
TopThan
TopThan
11.05.2023
6) ...=2y(3b-2a)+5x(3b+x) где-то со знаком накосячила. Предположительно будет либо (3b-2a)(2y+5x), либо (3b-2a)(2y-5x).
7) ...=5x(x-a)-7(a-x)=5x(x-a)+7(x-a)=(x-a)(5x+7).
8) ...=4x(x-z)-3(x-z)=(x-z)(4x-3).
9) ...=5a(x-y)-6b(x-y)=(x-y)(5a-6b).
10) ...=m(2m-n)+x(2m-n)=(2m-n)(m+x).
4,6(67 оценок)
Открыть все ответы
Ответ:
А)y`=dy/dx
(1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными
ydy=eˣdx/(1+eˣ)
∫ydy=∫eˣdx/(1+eˣ)
y²/2=ln|eˣ+1| + c - общее решение
Можно вместо с взять lnC  и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить.
y²/2=lnС(eˣ+1)  - общее решение
при у=1 х=0
1/2=ln2C
2C=√e
C=(√e)/2

y²/2=ln((eˣ+1)· (√e)/2) - частное решение
можно умножить на 2
y²=2ln((eˣ+1)· (√e)/2) 
или
y²=ln((eˣ+1)²·e/4) - частное решение 

b) y`=dy/dx
tgxdy=y㏑ydx - уравнение с разделяющимися переменными
dy/ylny=dx/tgx;
∫dy/ylny=∫dx/tgx;
∫d(lny)/lny=∫d(sinx)/sinx;
ln|lny)=ln|sinx|+lnC;
ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
 
При y=e x=π/4
ln|lne|=ln|Csin(π/4)|
ln|1|=ln|C√2/2|  
1=C√2/2
C=√2
ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
 
4,6(59 оценок)
Ответ:
chuvataeva
chuvataeva
11.05.2023
А)y`=dy/dx
(1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными
ydy=eˣdx/(1+eˣ)
∫ydy=∫eˣdx/(1+eˣ)
y²/2=ln|eˣ+1| + c - общее решение
Можно вместо с взять lnC  и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить.
y²/2=lnС(eˣ+1)  - общее решение
при у=1 х=0
1/2=ln2C
2C=√e
C=(√e)/2

y²/2=ln((eˣ+1)· (√e)/2) - частное решение
можно умножить на 2
y²=2ln((eˣ+1)· (√e)/2) 
или
y²=ln((eˣ+1)²·e/4) - частное решение 

b) y`=dy/dx
tgxdy=y㏑ydx - уравнение с разделяющимися переменными
dy/ylny=dx/tgx;
∫dy/ylny=∫dx/tgx;
∫d(lny)/lny=∫d(sinx)/sinx;
ln|lny)=ln|sinx|+lnC;
ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
 
При y=e x=π/4
ln|lne|=ln|Csin(π/4)|
ln|1|=ln|C√2/2|  
1=C√2/2
C=√2
ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
 
4,7(54 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ