1) a) 4+12x+9x2
4+12x+18
22+12x
2(11+6x)
б) 25-40х+16х2
25-40х+32
57-40х
г) -56а+49а*2+16
-56а+98а+16
42а+16
2(21а+8)
2) a) (y-1)(y+1) б) p^2-9 г) (3x-2)(3x+2) д) (3x)^2-2^2 е) a^2-3^2
y^2-1 (3x)^2-2^2 9x^2-4 a^2-9
в) 4^2-(5y^2) 9x^2-4
16-25y^2
4) a) a3-b3 б) 27a3+8b3
3(a-b) 81a+24b
3(27a+8b)
если b[1], b[2], b[3], .. - данная бесконечная убывающая геомметрическая прогрессия с знаменателем q, то
последовательность составленная из квадратов членов данной, тоже бессконечная убывающая c первым членом b[1] и знаменателем q^2
используя формулу суммы бесконечной убывающей прогрессии
b[1]/(1-q)=4
b[1]^2/(1-q^2)=48
откуда разделив соотвественно левые и правые части равенств, и используя формулу разности квадратов
b[1]^2/(1-q^2) :b[1]/(1-q)=48/4
b[1]/(1+q)=12
откуда
b[1]=12(1+q)=4(1-q)
12+12q=4-4q
12q+4q=4-12
16q=-8
q=-1/2
b[1]=4*(1-(-1/2))=4+2=6
y=2/3-1/7
у=14-3/21=12/21