а)Решение системы уравнений (5/3; -6/7);
б)Решение системы уравнений (2; -1).
Объяснение:
Решить систему уравнений:
a)3x-7y=11
6x-7y=16 методом сложения
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно любое из уравнений умножить на -1:
-3x+7y= -11
6x-7y=16
Складываем уравнения:
-3х+6х+7у-7у= -11+16
3х=5
х=5/3
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
6x-7y=16
-7у=16-6х
7у=6х-16
7у=6*5/3-16
7у= -6
у= -6/7
Решение системы уравнений (5/3; -6/7);
б)3x-y=7
2x+3y=1 методом подстановки
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
-у=7-3х
у=3х-7
2x+3(3х-7)=1
2х+9х-21=1
11х=1+21
11х=22
х=2
у=3х-7
у=3*2-7
у= -1
Решение системы уравнений (2; -1)
х ---числитель
у ---знаменатель
х < у (правильная дробь)
(x-1) / (y-1) = 1/2
2(x-1) = y-1
y = 2x - 2 + 1
y = 2x - 1
дробь будет выглядеть так: х / (2х-1) при х > 1
y = 2x - 1 ---это линейная функция (аргумент в первой степени)
график ---прямая линия
условие х < у ( у > х ) означает, что нужно найти те значения аргумента (х), которые лежат выше прямой у=х
условие у > х ---графически это полуплоскость, лежащая выше прямой у=х
(у=х ---биссектриса первого и третьего координатных углов)
найдем точку пересечения двух прямых: у=2х-1 и у=х
х=2х-1 х = 1 => все х > 1 будут лежать выше прямой у=х
x^2+2+x+4+4x4=4x^5
x^2+16x+16=4x^+5
-5x^2+16x+11=0
D=b^2-4ac=8^2-4x(-5)x11=256-220=36
x1= -8+6/2=2/2=1
x2= -8-6/2=-14/2=-7