Сначала разберёмся с выражением в скобках, а конкретно, приведём к общему знаменателю дроби: 1 1 a - 6b - --- = 6b a 6ab
Т.к. происходит деление на получившуюся дробь, то мы её переворачиваем и вместо деления ставим знак умножения: a^2 - 36b^2 6ab a^2 - 36b^2 (a - 6b)*(a + 6b) * = = = a + 6b 6ab a - 6b a - 6b a - 6b
Получившуюся в числителе разность квадратов, мы разложили на множители, после чего сократили.
Теперь можно подставлять конкретные значения: a + 6b = 5 2/17 + 6 * (5 2/17) = (5 2/17) * (1 + 6) = (5 2/17) * 7
Очевидно что все х1, х2, х3, х4 одновременно отрицательными быть не могут, тогда в левой части было отрицательное число.
очевидно что ни один из х1, х2, х3, х4 не может быть 0, (остальные тогда должны равняться 2, и 0+2*2*2=2 неверное, противоречие)
домножая первое на х1, второе на х2, третье на х3, четвертое на х4, получим
вычитая (и используя разность квадратов) получим откуда или
аналогично получаем другие соотношения таких же двух возможных типов соотношений между корнями
итого в общем надо рассмотреть следующие возможные комбинации (остальные дадут повтор в силу симметрии записи уравнений по переменным), + первое исходное уравнение можем убедиться что (1,1,1,1) - единственное решение